Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 8: 101205, 2021.
Article in English | MEDLINE | ID: mdl-34434728

ABSTRACT

Laboratory soil column experiments have been frequently performed for investigating various soil-related processes. In recent years, the demand for using biochar as a soil amendment for environmental and agricultural purposes has increased significantly. To assess the beneficial impacts of biochar, laboratory column experiments may be conducted using repacked biochar-amended soil before large-scale biochar application. Biochar is a porous material that might have transient hydrophobicity, and particle density, size, and shape that often differ from native soil. These factors might cause several experimental problems in repacked laboratory columns, including unrealistic hydraulic and solute transport and transformation measurements, spatial variation of biochar content, and error in estimating the repacked biochar-amended soil properties. Therefore, it is necessary to modify standard repacked column packing procedures for biochar-amended soil. In this work, several modifications are described for preparing repacked biochar-amended soils. The modifications are rinsing and oven-drying biochar, determining the optimum moisture content to achieve a homogenous mixture, determining the desired bulk density before column packing, and mixing and packing under wet conditions. In addition, repacked columns should be characterized by their inter, intra, and total porosities and pore volume after column packing.•Steps are recommended prior to packing the repacked biochar-amended soil columns: rinsing biochar and pre-determining optimum moisture content and bulk density.•Columns are wet-packed in subsections at the optimum moisture content to the desired bulk density. Following packing, the inter, intra, and total porosities and pore volume should be determined.•These steps will reduce unrealistic transient results, inhibit nonuniform packing and heterogeneity of biochar content, and provide important information for interpreting the performance of biochar-amended media.

2.
J Environ Manage ; 279: 111588, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33218831

ABSTRACT

While the use of biochar as a soil amendment is gaining popularity for environmental and agricultural purposes, spatial heterogeneity of biochar (segregation) in biochar-amended media and its underlying causes have been overlooked. In this study, for the first time particle segregation in biochar-amended media and its impact on the media's saturated hydraulic conductivity (Ksat) were investigated. Two uniformly graded media were amended with different sizes of a wood-based biochar under dry and wet conditions. While the intended biochar volume fraction (bf) was 17.5%, in dry-packed columns biochar was often segregated and the measured bf ranged from 7.5 ± 0.8 SE% (SE = standard error) to 23.6 ± 1.8 SE% across all spatial locations. If, however, 20% water (volume of water/bulk volume of packed media) was added to the mixtures during mixing, homogeneous packings were achieved. In dry-packing, segregation was governed by the difference in the physical properties of the media and the biochar: particle size, density, and shape. In wet-packing, segregation was prevented due to the inter-particle adhesion forces associated with water. Although X-ray computed tomography images showed that the presence of segregation altered particle distributions and pore morphologies, the Ksat for wet-packed and dry-packed columns were statistically identical. The results of this study suggest that laboratory methods for packing biochar-amended media should include moisturizing the mixture to inhibit particle segregation. Mixing under wet conditions is recommended for any type of soil and biochar and for any scale of application, in both the laboratory and field.


Subject(s)
Charcoal , Soil , Agriculture , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...