Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 7(7): 881-885, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-35650763

ABSTRACT

Li+-conducting solid polymer electrolytes (SPEs) obtained from supramolecular self-assembly of trimethylated cyclodextrin (TMCD), poly(ethylene oxide) (PEO), and lithium salt are investigated for application in lithium-metal batteries (LMBs) and lithium-ion batteries (LIBs). The considered electrolytes comprise nanochannels for fast lithium-ion transport formed by CD threaded on PEO chains. It is demonstrated that tailored modification of CD beneficially influences the structure and transport properties of solid polymer electrolytes, thereby enabling their application in LMBs. Molecular dynamics (MD) simulation and experimental data reveal that modification of CDs shifts the steady state between lithium ions inside and outside the channels, in this way improving the achievable ionic conductivity. Notably, the designed SPEs facilitated galvanostatic cycling in LMBs at fast charging and discharging rates for more than 200 cycles and high Coulombic efficiency.

2.
Top Curr Chem (Cham) ; 375(2): 37, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28299728

ABSTRACT

Application of different electrolyte components as blends in nonaqueous electrolyte formulations represents a viable approach towards improving the overall performance and reliability of a lithium ion battery cell. By combining the advantages of different electrolyte constituents, cell chemistry can be optimized and tailored for a specific purpose. In this paper, the current progress on possibilities, advantages, as well as limitations of blended nonaqueous electrolyte formulations, including solvent, salt and additive blends is reviewed and discussed. Emphasis is set on the physicochemical, electrochemical, and safety aspects. In addition, the aim of this review is to provide perspective and possible strategy for further and future development of blended nonaqueous electrolytes with long life, high energy density, high power, and adequate safety at competitive manufacturing costs. The provided overview and perspective on blended nonaqueous electrolyte formulations should encourage researchers to proceed with further and deeper investigations in this promising field of advanced batteries.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Electrolytes/chemistry , Ions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...