Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580643

ABSTRACT

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , Mice , Animals , Cell Cycle Proteins/metabolism , DNA , Meiosis/genetics , Synaptonemal Complex/metabolism , Recombination, Genetic , Homologous Recombination
2.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38077023

ABSTRACT

Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.

3.
Proc Natl Acad Sci U S A ; 114(47): 12495-12500, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109268

ABSTRACT

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.


Subject(s)
Cell Communication/genetics , Exosomes/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Oncogene Protein pp60(v-src)/genetics , Syntenins/genetics , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Amino Acid Motifs , Cell Movement , Cell Proliferation , Culture Media, Conditioned/pharmacology , Endocytosis , Endosomes/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MCF-7 Cells , Oncogene Protein pp60(v-src)/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Phosphorylation , Signal Transduction , Syndecans/genetics , Syndecans/metabolism , Syntenins/metabolism
4.
Oncotarget ; 5(20): 10070-83, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25301722

ABSTRACT

Inappropriate activation of epidermal growth factor receptor (EGFR) plays a causal role in many cancers including colon cancer. The activation of EGFR by phosphorylation is balanced by receptor kinase and protein tyrosine phosphatase activities. However, the mechanisms of negative EGFR regulation by tyrosine phosphatases remain largely unexplored. Our previous results indicate that protein tyrosine phosphatase receptor type O (PTPRO) is down-regulated in a subset of colorectal cancer (CRC) patients with a poor prognosis. Here we identified PTPRO as a phosphatase that negatively regulates SRC by directly dephosphorylating Y416 phosphorylation site. SRC activation triggered by PTPRO down-regulation induces phosphorylation of both EGFR at Y845 and the c-CBL ubiquitin ligase at Y731. Increased EGFR phosphorylation at Y845 promotes its receptor activity, whereas enhanced phosphorylation of c-CBL triggers its degradation promoting EGFR stability. Importantly, hyperactivation of SRC/EGFR signaling triggered by loss of PTPRO leads to high resistance of colon cancer to EGFR inhibitors. Our results not only highlight the PTPRO contribution in negative regulation of SRC/EGFR signaling but also suggest that tumors with low PTPRO expression may be therapeutically targetable by anti-SRC therapies.


Subject(s)
Colonic Neoplasms/enzymology , ErbB Receptors/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , src-Family Kinases/metabolism , Caco-2 Cells , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Gefitinib , HCT116 Cells , HEK293 Cells , HT29 Cells , Humans , MAP Kinase Signaling System , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-cbl/metabolism , Quinazolines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/biosynthesis , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...