Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 38(10): 2970-2972, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561161

ABSTRACT

MOTIVATION: Live-cell microscopy has become an essential tool for analyzing dynamic processes in various biological applications. Thereby, high-throughput and automated tracking analyses allow the simultaneous evaluation of large numbers of objects. However, to critically assess the influence of individual objects on calculated summary statistics, and to detect heterogeneous dynamics or possible artifacts, such as misclassified or -tracked objects, a direct mapping of gained statistical information onto the actual image data would be necessary. RESULTS: We present VisuStatR as a platform independent software package that allows the direct visualization of time-resolved summary statistics of morphological characteristics or motility dynamics onto raw images. The software contains several display modes to compare user-defined summary statistics and the underlying image data in various levels of detail. AVAILABILITY AND IMPLEMENTATION: VisuStatR is a free and open-source R-package, containing a user-friendly graphical-user interface and is available via GitHub at https://github.com/grrchrr/VisuStatR/ under the MIT+ license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Microscopy , Software , Artifacts , Licensure
2.
Cancer Cell ; 37(6): 800-817.e7, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32516590

ABSTRACT

Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.


Subject(s)
Bevacizumab/pharmacology , Cancer-Associated Fibroblasts/drug effects , Colorectal Neoplasms/drug therapy , Drug Synergism , Liver Neoplasms/drug therapy , Neovascularization, Pathologic/prevention & control , Renin-Angiotensin System/drug effects , Angiogenesis Inhibitors/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cancer-Associated Fibroblasts/pathology , Captopril/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Losartan/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Tumor Microenvironment/drug effects
3.
Article in English | MEDLINE | ID: mdl-31940539

ABSTRACT

Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and future information in both forward and backward direction. Assignment probabilities are determined jointly across multiple detections, and the probability of missing detections is computed. In addition, existence probabilities are determined by the network to handle track initiation and termination. For correspondence finding, track hypotheses are propagated to future time points so that information at later time points can be used to resolve ambiguities. A handcrafted similarity measure and handcrafted motion features are not necessary. Manually labeled data is not required for network training. We evaluated the performance of our approach using image data of the Particle Tracking Challenge as well as real fluorescence microscopy image sequences of virus structures. It turned out that the proposed approach outperforms previous methods.

4.
PLoS Comput Biol ; 15(8): e1007230, 2019 08.
Article in English | MEDLINE | ID: mdl-31419221

ABSTRACT

Most biological systems are difficult to analyse due to a multitude of interacting components and the concomitant lack of information about the essential dynamics. Finding appropriate models that provide a systematic description of such biological systems and that help to identify their relevant factors and processes can be challenging given the sheer number of possibilities. Model selection algorithms that evaluate the performance of a multitude of different models against experimental data provide a useful tool to identify appropriate model structures. However, many algorithms addressing the analysis of complex dynamical systems, as they are often used in biology, compare a preselected number of models or rely on exhaustive searches of the total model space which might be unfeasible dependent on the number of possibilities. Therefore, we developed an algorithm that is able to perform model selection on complex systems and searches large model spaces in a dynamical way. Our algorithm includes local and newly developed non-local search methods that can prevent the algorithm from ending up in local minima of the model space by accounting for structurally similar processes. We tested and validated the algorithm based on simulated data and showed its flexibility for handling different model structures. We also used the algorithm to analyse experimental data on the cell proliferation dynamics of CD4+ and CD8+ T cells that were cultured under different conditions. Our analyses indicated dynamical changes within the proliferation potential of cells that was reduced within tissue-like 3D ex vivo cultures compared to suspension. Due to the flexibility in handling various model structures, the algorithm is applicable to a large variety of different biological problems and represents a useful tool for the data-oriented evaluation of complex model spaces.


Subject(s)
Algorithms , Models, Biological , Systems Biology/statistics & numerical data , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Culture Techniques/methods , Cell Proliferation , Computational Biology , Computer Simulation , Humans
5.
Nat Commun ; 10(1): 2144, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086185

ABSTRACT

Pathogens face varying microenvironments in vivo, but suitable experimental systems and analysis tools to dissect how three-dimensional (3D) tissue environments impact pathogen spread are lacking. Here we develop an Integrative method to Study Pathogen spread by Experiment and Computation within Tissue-like 3D cultures (INSPECT-3D), combining quantification of pathogen replication with imaging to study single-cell and cell population dynamics. We apply INSPECT-3D to analyze HIV-1 spread between primary human CD4 T-lymphocytes using collagen as tissue-like 3D-scaffold. Measurements of virus replication, infectivity, diffusion, cellular motility and interactions are combined by mathematical analyses into an integrated spatial infection model to estimate parameters governing HIV-1 spread. This reveals that environmental restrictions limit infection by cell-free virions but promote cell-associated HIV-1 transmission. Experimental validation identifies cell motility and density as essential determinants of efficacy and mode of HIV-1 spread in 3D. INSPECT-3D represents an adaptable method for quantitative time-resolved analyses of 3D pathogen spread.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/pathogenicity , Models, Biological , Primary Cell Culture/methods , Virus Physiological Phenomena , CD4-Positive T-Lymphocytes/physiology , Cell Movement , Cells, Cultured , Computer Simulation , HEK293 Cells , HIV-1/physiology , Healthy Volunteers , Humans
6.
J Immunol ; 201(9): 2731-2743, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30257886

ABSTRACT

HIV-1 Nef is a multifunctional protein that optimizes virus spread and promotes immune evasion of infected cells to accelerate disease progression in AIDS patients. As one of its activities, Nef reduces the motility of infected CD4+ T lymphocytes in confined space. In vivo, Nef restricts T lymphocyte homing to lymph nodes as it reduces the ability for extravasation at the diapedesis step. Effects of Nef on T lymphocyte motility are typically mediated by its ability to reduce actin remodeling. However, interference with diapedesis does not depend on residues in Nef required for inhibition of host cell actin dynamics. In search for an alternative mechanism by which Nef could alter T lymphocyte extravasation, we noted that the viral protein interferes with the polarization of primary human CD4+ T lymphocytes upon infection with HIV-1. Expression of Nef alone is sufficient to disrupt T cell polarization, and this effect is conserved among lentiviral Nef proteins. Nef acts by arresting the oscillation of CD4+ T cells between polarized and nonpolarized morphologies. Mapping studies identified the binding site for the Nef-associated kinase complex (NAKC) as critical determinant of this Nef activity and a NAKC-binding-deficient Nef variant fails to impair CD4+ T lymphocyte extravasation and homing to lymph nodes. These results thus imply the disruption of T lymphocyte polarity via its NAKC binding site as a novel mechanism by which lentiviral Nef proteins alter T lymphocyte migration in vivo.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cell Polarity/immunology , Chemotaxis, Leukocyte/immunology , Transendothelial and Transepithelial Migration/immunology , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Binding Sites , CD4-Positive T-Lymphocytes/immunology , Humans , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
7.
Cell Microbiol ; 20(3)2018 03.
Article in English | MEDLINE | ID: mdl-29316156

ABSTRACT

Motile cells and pathogens migrate in complex environments and yet are mostly studied on simple 2D substrates. In order to mimic the diverse environments of motile cells, a set of assays including substrates of defined elasticity, microfluidics, micropatterns, organotypic cultures, and 3D gels have been developed. We briefly introduce these and then focus on the use of micropatterned pillar arrays, which help to bridge the gap between 2D and 3D. These structures are made from polydimethylsiloxane, a moldable plastic, and their use has revealed new insights into mechanoperception in Caenorhabditis elegans, gliding motility of Plasmodium, swimming of trypanosomes, and nuclear stability in cancer cells. These studies contributed to our understanding of how the environment influences the respective cell and inform on how the cells adapt to their natural surroundings on a cellular and molecular level.


Subject(s)
Cell Movement/physiology , Animals , Biological Assay/methods , Caenorhabditis elegans/pathogenicity , Dimethylpolysiloxanes , Humans , Plasmodium/pathogenicity
8.
Virology ; 498: 44-56, 2016 11.
Article in English | MEDLINE | ID: mdl-27560372

ABSTRACT

The HIV-1 pathogenesis factor Nef interacts with numerous ligands to affect cellular vesicular transport, signal transduction and cytoskeletal dynamics. While most Nef functions depend on multivalent protein interaction motifs, disrupting actin dynamics requires a motif that specifically recruits the host kinase PAK2. An adjacent aspartate was recently predicted to mediate Nef-ß-catenin interactions. We report here that ß-catenin can be co-immunoprecipitated with Nef.GFP from Jurkat T cell lysates. This association is conserved among lentiviral Nef proteins but does not involve classical Nef protein interaction motifs, including the critical aspartate. While aspartate-to-alanine mutations impaired cell surface receptor downregulation and interference with actin dynamics and cell motility by HIV-1 NA7 Nef, analogous mutations did not affect HIV-1 SF2 Nef function. These allelic differences were determined by a proximal lysine/arginine polymorphism. These results emphasize differences between Nef alleles regarding the functional role of individual residues and underscore the need for allele-specific structure-function analyses.


Subject(s)
Alleles , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , Polymorphism, Single Nucleotide , nef Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Cell Line , Humans , Models, Molecular , Mutation , Position-Specific Scoring Matrices , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Cell Surface/metabolism , beta Catenin/chemistry , beta Catenin/metabolism , nef Gene Products, Human Immunodeficiency Virus/chemistry , nef Gene Products, Human Immunodeficiency Virus/metabolism , p21-Activated Kinases/chemistry , p21-Activated Kinases/metabolism
9.
mBio ; 6(5): e01309-15, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26350970

ABSTRACT

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. IMPORTANCE: Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.


Subject(s)
HIV-1/physiology , Vesicular Transport Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , p21-Activated Kinases/metabolism , Actins/metabolism , Humans , Immune Evasion , Protein Binding
10.
Blood ; 125(10): 1611-22, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25527710

ABSTRACT

Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.


Subject(s)
HIV-1/pathogenicity , Macrophages/physiology , Macrophages/virology , nef Gene Products, Human Immunodeficiency Virus/physiology , Animals , Cell Line, Tumor , Cell Membrane Structures/pathology , Cell Membrane Structures/physiology , Cell Movement/physiology , Cells, Cultured , Cellular Reprogramming/physiology , HIV Infections/pathology , HIV Infections/physiopathology , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Host-Pathogen Interactions/physiology , Humans , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-hck/physiology , Wiskott-Aldrich Syndrome Protein/physiology , nef Gene Products, Human Immunodeficiency Virus/genetics
11.
Nat Rev Microbiol ; 12(8): 563-74, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25029025

ABSTRACT

In vitro studies in primary or immortalized cells continue to be used to elucidate the essential principles that govern the interactions between HIV-1 and isolated target cells. However, until recently, substantial technical barriers prevented this information from being efficiently translated to the more complex scenario of HIV-1 spread in the host in vivo, which has limited our understanding of the impact of host physiological parameters on the spread of HIV-1. In this Review, we discuss the recent development of imaging approaches to visualize HIV-1 spread and the adaptation of these approaches to organotypic ex vivo models and animal models. We focus on new concepts, including the mechanisms and in vivo relevance of cell-cell transmission for HIV-1 spread and the function of the HIV-1 pathogenesis factor Nef, which have emerged from the application of these integrative approaches in complex cell systems.


Subject(s)
HIV Infections/transmission , HIV-1/physiology , Models, Biological , Animals , Disease Models, Animal , HIV Infections/epidemiology , Humans
12.
Proc Natl Acad Sci U S A ; 109(45): 18541-6, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23093676

ABSTRACT

HIV-1 negative factor (Nef) elevates virus replication and contributes to immune evasion in vivo. As one of its established in vitro activities, Nef interferes with T-lymphocyte chemotaxis by reducing host cell actin dynamics. To explore Nef's influence on in vivo recirculation of T lymphocytes, we assessed lymph-node homing of Nef-expressing primary murine lymphocytes and found a drastic impairment in homing to peripheral lymph nodes. Intravital imaging and 3D immunofluorescence reconstruction of lymph nodes revealed that Nef potently impaired T-lymphocyte extravasation through high endothelial venules and reduced subsequent parenchymal motility. Ex vivo analyses of transendothelial migration revealed that Nef disrupted T-lymphocyte polarization and interfered with diapedesis and migration in the narrow subendothelial space. Consistently, Nef specifically affected T-lymphocyte motility modes used in dense environments that pose high physical barriers to migration. Mechanistically, inhibition of lymph node homing, subendothelial migration and cell polarization, but not diapedesis, depended on Nef's ability to inhibit host cell actin remodeling. Nef-mediated interference with in vivo recirculation of T lymphocytes may compromise T-cell help and thus represents an important mechanism for its function as a HIV pathogenicity factor.


Subject(s)
Cell Movement/immunology , Cellular Microenvironment/immunology , HIV-1/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/virology , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Separation , Cells, Cultured , Endothelium, Vascular/metabolism , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Porosity , Stress, Mechanical , Transduction, Genetic , Transendothelial and Transepithelial Migration , Venules/metabolism
13.
Cytometry A ; 75(7): 562-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19405114

ABSTRACT

Nuclear variation in size and shape and genomic instability are hallmarks of dedifferentiated cancer cells. Although micronuclei are a typical long-term consequence of DNA damage, their contribution to chromosomal instability and clonal diversity in cancer disease is unclear. We isolated cancer cells with or without micronuclei to perform genomic analysis. Cell suspensions of HT1080 fibrosarcoma cells from either 2D culture or after isolation from 3D collagen matrix culture were stained with Hoechst 33342 and after classification for presence or absence of a micronucleus via bright-field and epifluorescence microscopy, cells were individually aspirated with a micropipette. Subsequently, whole-genome amplification and single-cell comparative genomic hybridization (CGH) were applied to detect genomic aberrations. The data show a high-fidelity isolation and genome amplification that lacks adverse effects by prior Hoechst 33342 staining. HT1080 cells showed a high degree of divergent amplifications, but neither location nor frequency of aberrations was dependent on 2D or 3D culture conditions or micronucleation. Thus, single-cell selection of defined nuclear states is amenable to single-cell CGH and here provides first insight into the aberration drift and genomic diversity in cancer cells with and without micronuclei.


Subject(s)
Comparative Genomic Hybridization/methods , Fibrosarcoma/genetics , Genomic Instability/physiology , Micronuclei, Chromosome-Defective , Oligonucleotide Array Sequence Analysis , Cell Line, Tumor , Fibrosarcoma/pathology , Genomic Instability/genetics , Humans , Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...