Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(44): 28490-28493, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320529

ABSTRACT

We report a [3+2] cycloaddition using 3,6-bis-propargyloxy-1,2,4,5-tetrazine and azides to synthesize energetic polymers containing 1,2,4,5-tetrazine within the scaffold. This work also includes [3+2] cycloaddition to crosslink azide containing glycidyl azide polymer (GAP). These reactions provide pathways for incorporation of 1,2,4,5-tetrazine into novel energetic materials using click-chemistry and provide an alternative polymer curing approach.

2.
J Med Chem ; 62(13): 6287-6314, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257877

ABSTRACT

Because of the large degree of homology among dopamine D2-like receptors, discovering ligands capable of discriminating between the D2, D3, and D4 receptor subtypes remains a significant challenge. Previous work has exemplified the use of bitopic ligands as a powerful strategy in achieving subtype selectivity for agonists and antagonists alike. Inspired by the potential for chemical modification of the D3 preferential agonists (+)-PD128,907 (1) and PF592,379 (2), we synthesized bitopic structures to further improve their D3R selectivity. We found that the (2S,5S) conformation of scaffold 2 resulted in a privileged architecture with increased affinity and selectivity for the D3R. In addition, a cyclopropyl moiety incorporated into the linker and full resolution of the chiral centers resulted in lead compound 53 and eutomer 53a that demonstrate significantly higher D3R binding selectivities than the reference compounds. Moreover, the favorable metabolic stability in rat liver microsomes supports future studies in in vivo models of dopamine system dysregulation.


Subject(s)
Dopamine Agonists/chemistry , Dopamine Agonists/metabolism , Indoles/chemistry , Indoles/metabolism , Receptors, Dopamine D3/metabolism , Animals , Dopamine Agonists/chemical synthesis , Drug Design , HEK293 Cells , Humans , Indoles/chemical synthesis , Ligands , Microsomes, Liver/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship
3.
Angew Chem Int Ed Engl ; 56(13): 3575-3578, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28230299

ABSTRACT

This study presents the synthesis and characterization of the oxidation products of 3,6-diazido-1,2,4,5-tetrazine (1) and 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine (2). 3,6-Diazido-1,2,4,5-tetrazine-1,4-dioxide was produced from oxidation with peroxytrifluoroacetic acid, and more effectively using hypofluorous acid, and 2 can be oxidized to two different products, 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine mono-N-oxide and di-N-oxide. These N-oxide compounds display promising performance properties as energetic materials.

4.
Angew Chem Int Ed Engl ; 55(49): 15315-15318, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27862728

ABSTRACT

The reaction of 3-amino-5-nitro-1,2,4-triazole with nitrous acid produces the corresponding diazonium salt. When the diazonium salt is treated with nitroacetonitrile, a subsequent condensation and cyclization reaction occurres to produced 4-amino-3,7-dinitrotriazolo-[5,1-c][1,2,4] triazine (DPX-26). X-ray crystallographic analysis shows that the DPX-26 has a density of 1.86 g cm-3 , while it is calculated to have a heat of formation of 398.3 kJ mol-1 . DPX-26 is predicted to approach the explosive performance of RDX but displays significantly better safety properties. Oxidation of DPX-26 using hypofluorous acid produces 4-amino-3,7-dinitrotriazolo-[5,1-c][1,2,4] triazine 4-oxide (DPX-27), which is also predicted to be a high-performance material with enhanced safety properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...