Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37371110

ABSTRACT

The physiological functions of endothelial cells control vascular tone, permeability, inflammation, and angiogenesis, which significantly help to maintain a healthy vascular system. Several cardiovascular diseases are characterized by endothelial cell activation or dysfunction triggered by external stimuli such as disturbed flow, hypoxia, growth factors, and cytokines in response to high levels of low-density lipoprotein and cholesterol, hypertension, diabetes, aging, drugs, and smoking. Increasing evidence suggests that uncontrolled proinflammatory signaling and further alteration in endothelial cell phenotypes such as barrier disruption, increased permeability, endothelial to mesenchymal transition (EndMT), and metabolic reprogramming further induce vascular diseases, and multiple studies are focusing on finding the pathways and mechanisms involved in it. This review highlights the main proinflammatory stimuli and their effects on endothelial cell function. In order to provide a rational direction for future research, we also compiled the most recent data regarding the impact of endothelial cell dysfunction on vascular diseases and potential targets that impede the pathogenic process.


Subject(s)
Cardiovascular Diseases , Vascular Diseases , Humans , Endothelial Cells/metabolism , Vascular Diseases/metabolism , Cardiovascular Diseases/metabolism , Inflammation/pathology , Phenotype
2.
J Lipid Atheroscler ; 11(3): 272-279, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36212750

ABSTRACT

Objective: The endothelial inflammatory response plays an important role in atherogenesis by inducing nuclear factor (NF)κB-dependent cell adhesion molecule expression and monocyte recruitment. Here, we screened for natural ligands and investigated the ability of shinjulactone A to inhibit interleukin-1ß (IL-1ß)-induced endothelial inflammatory signaling. Methods: The natural compound library included 880 single compounds isolated from medicinal plants by the Korean Medicinal Material Bank. Primary endothelial cells were pretreated with single compounds before stimulation with IL-1ß to induce endothelial inflammation. Endothelial inflammation was measured by assaying NFκB activation and monocyte adhesion. The endothelial-mesenchymal transition (EndMT) was evaluated using cell type-specific marker protein expression and morphology. Results: Shinjulactone A was identified as an efficient blocker of IL-1ß -induced NFκB activation, with a half-maximal inhibitory concentration of approximately 1 µM, and monocyte recruitment in endothelial cells. However, it did not affect lipopolysaccharide-induced NFκB activation in macrophages. Compared to Bay 11-782, a well-known NFκB inhibitor that shows considerable cytotoxicity during long-term treatment, shinjulactone A did not affect endothelial cell viability. Furthermore, it also significantly inhibited the EndMT, which is known to promote atherosclerosis and plaque instability. Conclusion: We suggest that shinjulactone A may be an effective and safe drug candidate for atherosclerosis because it targets and inhibits both endothelial inflammation and the EndMT, without impairing NFκB-dependent innate immunity in macrophages.

SELECTION OF CITATIONS
SEARCH DETAIL
...