Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 28(7): e18243, 2024 04.
Article in English | MEDLINE | ID: mdl-38509740

ABSTRACT

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Subject(s)
Cardiomyopathies , Heme Oxygenase (Decyclizing) , Animals , Humans , Zebrafish/genetics , Isoproterenol/pharmacology , Heme Oxygenase-1/genetics , Myocardium , Hypoxia , Myocytes, Cardiac
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077457

ABSTRACT

Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/ß-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/ß-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/ß-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.


Subject(s)
Heart Failure , MicroRNAs , Tankyrases , Animals , Dilatation , Heart Failure/drug therapy , Isoproterenol/pharmacology , MicroRNAs/genetics , Rats , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Wnt Signaling Pathway , Zebrafish/metabolism , beta Catenin/metabolism
3.
Front Cardiovasc Med ; 9: 919355, 2022.
Article in English | MEDLINE | ID: mdl-35783854

ABSTRACT

Objectives: Impaired protein kinase signaling is a hallmark of ischemic heart disease (IHD). Inadequate understanding of the pathological mechanisms limits the development of therapeutic approaches. We aimed to identify the key cardiac kinases and signaling pathways in patients with IHD with an effort to discover potential therapeutic strategies. Methods: Cardiac kinase activity in IHD left ventricle (LV) and the related signaling pathways were investigated by kinomics, transcriptomics, proteomics, and integrated multi-omics approach. Results: Protein kinase A (PKA) and protein kinase G (PKG) ranked on top in the activity shift among the cardiac kinases. In the IHD LVs, PKA activity decreased markedly compared with that of controls (62% reduction, p = 0.0034), whereas PKG activity remained stable, although the amount of PKG protein increased remarkably (65%, p = 0.003). mRNA levels of adenylate cyclases (ADCY 1, 3, 5, 9) and cAMP-hydrolysing phosphodiesterases (PDE4A, PDE4D) decreased significantly, although no statistically significant alterations were observed in that of PKGs (PRKG1 and PRKG2) and guanylate cyclases (GUCYs). The gene expression of natriuretic peptide CNP decreased remarkably, whereas those of BNP, ANP, and neprilysin increased significantly in the IHD LVs. Proteomics analysis revealed a significant reduction in protein levels of "Energy metabolism" and "Muscle contraction" in the patients. Multi-omics integration highlighted intracellular signaling by second messengers as the top enriched Reactome pathway. Conclusion: The deficiency in cAMP/PKA signaling pathway is strongly implicated in the pathogenesis of IHD. Natriuretic peptide CNP could be a potential therapeutic target for the modulation of cGMP/PKG signaling.

4.
EBioMedicine ; 51: 102608, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31911272

ABSTRACT

BACKGROUND: Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor previously shown to regulate vasculogenesis and angiogenesis. We aimed to investigate the role of Vezf1 in the postnatal heart. METHODS: The role of Vezf1 in regulating cardiac growth and contractile function was studied in zebrafish and in primary cardiomyocytes. FINDINGS: We find that expression of Vezf1 is decreased in diseased human myocardium and mouse hearts. Our experimental data shows that knockdown of zebrafish Vezf1 reduces cardiac growth and results in impaired ventricular contractile response to ß-adrenergic stimuli. However, Vezf1 knockdown is not associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/ß-MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1. INTERPRETATION: We demonstrate a role for Vezf1 in regulation of compensatory cardiac growth and cardiomyocyte contractile function, which may be relevant in human cardiac disease.


Subject(s)
DNA-Binding Proteins/metabolism , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Adrenergic Agents/pharmacology , Animals , Binding Sites , Cardiomyopathies/genetics , Gene Expression Regulation/drug effects , Genes, Reporter , Humans , Luciferases/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Neovascularization, Physiologic/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Rats, Sprague-Dawley , Zebrafish
5.
J Cardiovasc Dev Dis ; 6(2)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987331

ABSTRACT

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.

6.
Eur J Pharmacol ; 818: 57-66, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29055786

ABSTRACT

Carbon monoxide (CO), produced by heme oxygenase-1 (HO-1), is an endogenous paracrine factor involved in the regulation of cardiovascular structure and function. We studied the effects of a synthetic CO releasing molecule (CORM-3) on cardiac recovery and myocardial microRNA expression after myocardial infarction (MI). Male Wistar rats with MI (n = 75) or sham-operated controls (n = 75) were treated from day 4 to day 14 after MI either with synthetic CORM-3 or with inactive iCORM and killed 2, 4 or 8 weeks post-MI. Infarct size, vascular and capillary densities, the amount of cardiomyocytes in the infarct area, and cardiomyocyte proliferation and apoptosis were determined. PCR was used for microRNA and mRNA quantification, western blotting to evaluate protein expression and echocardiography to assess cardiac structure and function. CORM-3 treatment increased vascular density (P< 0.05 vs. iCORM) and the proportion of cardiomyocytes (P< 0.05 vs. iCORM) in the infarct area. Ejection fraction improved (P< 0.05) and left ventricular volumes decreased (P< 0.05) in CORM-3 treated MI groups compared to iCORM treatment. CORM-3 treatment decreased the amount of proliferating Ki67 positive cardiomyocytes in the infarct/border area at week 2 after MI compared to iCORM treatment, whereas the amount of apoptotic cardiomyocytes did not differ between CORM-3 and iCORM groups. Compared to iCORM treatment, CORM-3 decreased expression on miR-206 in the remote area at week 2 after MI. The CO releasing molecule CORM-3 improved structural and functional cardiac recovery after MI. Modulation of HO-1-CO axis may prove novel drug targets to facilitate cardiac recovery after myocardial injury.


Subject(s)
Heart Injuries/physiopathology , Heart/drug effects , Heart/physiopathology , Organometallic Compounds/pharmacology , Recovery of Function/drug effects , Animals , Apoptosis/drug effects , Body Weight/drug effects , Capillaries/drug effects , Capillaries/metabolism , Cell Proliferation/drug effects , Fibrosis , Heart Injuries/metabolism , Heart Injuries/pathology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Organ Size/drug effects , Rats , Rats, Wistar
7.
PLoS One ; 11(2): e0149956, 2016.
Article in English | MEDLINE | ID: mdl-26918334

ABSTRACT

BACKGROUND: Apoptosis is a key mechanism involved in ischemic acute kidney injury (AKI), but its role in septic AKI is controversial. Biomarkers indicative of apoptosis could potentially detect developing AKI prior to its clinical diagnosis. METHODS: As a part of the multicenter, observational FINNAKI study, we performed a pilot study among critically ill patients who developed AKI (n = 30) matched to critically ill patients without AKI (n = 30). We explored the urine and plasma levels of cytokeratin-18 neoepitope M30 (CK-18 M30), cell-free DNA, and heat shock protein 70 (HSP70) at intensive care unit (ICU) admission and 24h thereafter, before the clinical diagnosis of AKI defined by the Kidney Disease: Improving Global Outcomes -creatinine and urine output criteria. Furthermore, we performed a validation study in 197 consecutive patients in the FINNAKI cohort and analyzed the urine sample at ICU admission for CK-18 M30 levels. RESULTS: In the pilot study, the urine or plasma levels of measured biomarkers at ICU admission, at 24h, or their maximum value did not differ significantly between AKI and non-AKI patients. Among 20 AKI patients without severe sepsis, the urine CK-18 M30 levels were significantly higher at 24h (median 116.0, IQR [32.3-233.0] U/L) than among those 20 patients who did not develop AKI (46.0 [0.0-54.0] U/L), P = 0.020. Neither urine cell-free DNA nor HSP70 levels significantly differed between AKI and non-AKI patients regardless of the presence of severe sepsis. In the validation study, urine CK-18 M30 level at ICU admission was not significantly higher among patients developing AKI compared to non-AKI patients regardless of the presence of severe sepsis or CKD. CONCLUSIONS: Our findings do not support that apoptosis detected with CK-18 M30 level would be useful in assessing the development of AKI in the critically ill. Urine HSP or cell-free DNA levels did not differ between AKI and non-AKI patients.


Subject(s)
Acute Kidney Injury/pathology , Acute Kidney Injury/urine , Apoptosis , Aged , Biomarkers/urine , Critical Illness , DNA/blood , DNA/urine , Female , HSP70 Heat-Shock Proteins/urine , Humans , Intensive Care Units , Keratin-18/urine , Male , Middle Aged , Pilot Projects , Prospective Studies
8.
J Renin Angiotensin Aldosterone Syst ; 16(1): 92-102, 2015 Mar.
Article in English | MEDLINE | ID: mdl-23629679

ABSTRACT

INTRODUCTION: We studied the effects of angiotensin type 1 receptor blockade (ARB) on formation of new cardiomyocytes, neovascularization and ventricular remodelling after myocardial infarction (MI). METHODS: Male Wistar rats with MI or sham-operated controls were treated with either losartan or vehicle. Bromodeoxyuridine (BrdU) was given to identify newly formed cardiac cells. Immunohistochemical analysis was used to quantify proliferative and apoptotic cardiomyocytes, vascular structures and c-Kit+ stem/progenitor cells, western blotting to evaluate gene expression, and planimetry and echocardiography to assess cardiac structure and function. RESULTS: The number of BrdU+ cardiomyocytes increased similarly in the vehicle and losartan treated MI groups. The number of apoptotic or proliferating cardiomyocytes did not differ between losartan and vehicle treated rats. Losartan induced an increase in capillary and BrdU+ vascular densities in the infarct border zone. Losartan treatment completely prevented post-MI cardiac hypertrophy. In the non-infarcted myocardium the amount of all BrdU+ cells (including non-cardiomyocyte cells) was highest in the vehicle treated MI rats at week 4. CONCLUSIONS: The number of newly formed cardiomyocytes increased after MI. Angiotensin II blockade neither stimulated nor prevented cardiomyocyte regeneration. ARB treatment increased vascular densities in the infarct border zone and modulated remodelling of the non-infarcted myocardium preventing effectively post-MI cardiac hypertrophy.


Subject(s)
Angiotensin II Type 2 Receptor Blockers/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocytes, Cardiac/drug effects , Animals , Antimetabolites/pharmacology , Apoptosis/drug effects , Body Weight , Bromodeoxyuridine/pharmacology , Cardiomegaly/etiology , Cardiomegaly/prevention & control , Losartan/pharmacology , Myocardial Infarction/diagnostic imaging , Neovascularization, Physiologic/drug effects , Proto-Oncogene Proteins c-kit/metabolism , Rats , Regeneration/drug effects , Renin/blood , Stem Cells , Ultrasonography , Vascular Endothelial Growth Factor A/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...