Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683289

ABSTRACT

Industrialized environments, despite benefits such as higher levels of formal education and lower rates of infections, can also have pernicious impacts upon brain atrophy. Partly for this reason, comparing age-related brain volume trajectories between industrialized and non-industrialized populations can help to suggest lifestyle correlates of brain health. The Tsimane, indigenous to the Bolivian Amazon, derive their subsistence from foraging and horticulture and are physically active. The Moseten, a mixed-ethnicity farming population, are physically active but less than the Tsimane. Within both populations (N = 1024; age range = 46-83), we calculated regional brain volumes from computed tomography and compared their cross-sectional trends with age to those of UK Biobank (UKBB) participants (N = 19,973; same age range). Surprisingly among Tsimane and Moseten (T/M) males, some parietal and occipital structures mediating visuospatial abilities exhibit small but significant increases in regional volume with age. UKBB males exhibit a steeper negative trend of regional volume with age in frontal and temporal structures compared to T/M males. However, T/M females exhibit significantly steeper rates of brain volume decrease with age compared to UKBB females, particularly for some cerebro-cortical structures (e.g., left subparietal cortex). Across the three populations, observed trends exhibit no interhemispheric asymmetry. In conclusion, the age-related rate of regional brain volume change may differ by lifestyle and sex. The lack of brain volume reduction with age is not known to exist in other human population, highlighting the putative role of lifestyle in constraining regional brain atrophy and promoting elements of non-industrialized lifestyle like higher physical activity.

2.
J Neurotrauma ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38482793

ABSTRACT

Accurate early diagnosis of concussion is useful to prevent sequelae and improve neurocognitive outcomes. Early after head impact, concussion diagnosis may be doubtful in persons whose neurological, neuroradiological, and/or neurocognitive examinations are equivocal. Such individuals can benefit from novel accurate assessments that complement clinical diagnostics. We introduce a Bayesian machine learning classifier to identify concussion through cortico-cortical connectome mapping from magnetic resonance imaging in persons with quasi-normal cognition and without neuroradiological findings. Classifier features are generated from connectivity matrices specifying the mean fractional anisotropy of white matter connections linking brain structures. Each connection's saliency to classification was quantified by training individual classifier instantiations using a single feature type. The classifier was tested on a discovery sample of 92 healthy controls (HCs; 26 females, age µ ± σ: 39.8 ± 15.5 years) and 471 adult mTBI patients (158 females, age µ ± σ: 38.4 ± 5.9 years). Results were replicated in an independent validation sample of 256 HCs (149 females, age µ ± σ: 55.3 ± 12.1 years) and 126 patients with concussion (46 females, age µ ± σ: 39.0 ± 17.7 years). Classifier accuracy exceeds 99% in both samples, suggesting robust generalizability to new samples. Notably, 13 bilateral cortico-cortical connection pairs predict diagnostic status with accuracy exceeding 99% in both discovery and validation samples. Many such connection pairs are between prefrontal cortex structures, fronto-limbic and fronto-subcortical structures, and occipito-temporal structures in the ventral ("what") visual stream. This and related connectivity form a highly salient network of brain connections that is particularly vulnerable to concussion. Because these connections are important in mediating cognitive control, memory, and attention, our findings explain the high frequency of cognitive disturbances after concussion. Our classifier was trained and validated on concussed participants with cognitive profiles very similar to those of HCs. This suggests that the classifier can complement current diagnostics by providing independent information in clinical contexts where patients have quasi-normal cognition but where concussion diagnosis stands to benefit from additional evidence.

3.
J Gerontol A Biol Sci Med Sci ; 78(6): 872-881, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36183259

ABSTRACT

The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebral Cortex , Biomarkers , Prefrontal Cortex
SELECTION OF CITATIONS
SEARCH DETAIL
...