Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 136(12): 124905, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22462893

ABSTRACT

A direct consequence of the finite compressibility of a swollen microgel is that it can shrink and deform in response to an external perturbation. As a result, concentrated suspensions of these particles exhibit relaxation dynamics and rheological properties which can be very different with respect to those of a hard sphere suspension or an emulsion. We study the reduction in size of ionic microgels in response to increasing number of particles to show that particle shrinkage originates primarily from steric compression, and that the effect of ion-induced de-swelling of the polymer network is negligible. With increasing particle concentration, the single particle dynamics switch from those typical of a liquid to those of a super-cooled liquid and finally to those of a glass. However, the transitions occur at volume fractions much higher than those characterizing a hard sphere system. In the super-cooled state, the distribution of displacements is non-gaussian and the dependence of the structural relaxation time on volume fraction is describable by a Volger-Fulcher-Tammann function.

2.
Langmuir ; 28(21): 7990-8000, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22432592

ABSTRACT

The hydrophilic nature of graphene oxide sheets can be tailored by varying the carbon to oxygen ratio. Depending on this ratio, the particles can be deposited at either a water-air or a water-oil interface. Upon compression of thus-created Langmuir monolayers, the sheets cover the entire interface, assembling into a strong, compact layer of tiled graphene oxide sheets. With further compression, the particle layer forms wrinkles that are reversible upon expansion, resembling the behavior of an elastic membrane. In the present work, we investigate under which conditions the structure and properties of the interfacial layer are such that free-standing films can be obtained. The interfacial rheological properties of these films are investigated using both compressional experiments and shear rheometry. The role of surface rheology in potential applications of such tiled films is explored. The rheological properties are shown to be responsible for the efficiency of such layers in stabilizing water-oil emulsions. Moreover, because of the mechanical integrity, large-area monolayers can be deposited by, for example, Langmuir-Blodgett techniques using aqueous subphases. These films can be turned into transparent conductive films upon subsequent chemical reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...