Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 290: 112545, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33892237

ABSTRACT

Classical biocontrol is key for the successful management of invasive alien plants; yet, it is still relatively new in Europe. Although post-release monitoring is essential to evaluate the effectiveness of a biocontrol agent, it is often neglected. This study reports the detailed post-release monitoring of the first biocontrol agent intentionally introduced against an invasive plant in continental Europe. The Australian bud-galling wasp Trichilogaster acaciaelongifoliae (Frogatt) is used to control the invasive Acacia longifolia (Andr.) Willd., with a long history of success in South Africa. This biocontrol agent was first released in Europe in 2015 at several sites along the Portuguese coast. We monitored the establishment, spread and early impacts of T. acaciaelongifoliae on target-plants in Portugal, across 61 sites, from 2015 to 2020. Initial release of adults emerging from galls imported from South Africa and the subsequent releases from galls established in Portugal (2018 onwards) was compared, assessing the implications of the hemisphere shift. The impacts on the reproductive output and vegetative growth of A. longifolia were evaluated in more detail at three sites. From 2015 to 2019, 3567 T. acaciaelongifoliae were released at 61 sites, with establishment confirmed at 36 sites by 2020. The transfer of the wasp from the southern hemisphere limited its initial establishment, but increased rates of establishment followed with synchronization of its life cycle with northern hemisphere conditions. Therefore, after an initial moderate establishment, T. acaciaelongifoliae adapted to the northern hemisphere conditions and experienced an exponential growth (from 66 galls by 2016, to 24000 galls by 2018). Galled A. longifolia branches produced significantly fewer pods (-84.1%), seeds (-95.2%) and secondary branches (-33.3%) and had fewer phyllodes but increased growth of the main branch compared to ungalled branches. Trichilogaster acaciaelongifoliae successfully established in the northern hemisphere, despite the initial phenological mismatch and adverse weather conditions. To achieve this, it had to establish and synchronize its life cycle with the phenology of its host-plant, after which it developed exponentially and began to show significant impacts on the reproductive output of A. longifolia.


Subject(s)
Wasps , Animals , Australia , Europe , Portugal , South Africa
2.
Am J Bot ; 106(3): 352-362, 2019 03.
Article in English | MEDLINE | ID: mdl-30816998

ABSTRACT

PREMISE OF THE STUDY: Knowledge about the introduction history (source(s), number and size of introduction events) of an invasive species is a crucial prerequisite to understand invasion success and to facilitate effective and sustainable management approaches, especially for effective biological control. We investigated the introduction history of the Australian legume tree Acacia dealbata in South Africa. Results of this study will not only provide critical information for the management of this species in South Africa, but will also broaden our overall knowledge on the invasion ecology of this globally important invasive tree. METHODS: We used nuclear microsatellite markers to compare the genetic diversity and structure between 42 native Australian and 18 invasive South African populations and to test different and competing introduction scenarios using Approximate Bayesian Computation analyses. KEY RESULTS: Australian populations were characterized by two distinct genetic clusters, while South African populations lacked any clear genetic structure and showed significantly lower levels of genetic diversity compared to native range populations. South African populations were also genetically divergent from native populations and the most likely introduction scenario indicated an unknown source population. CONCLUSIONS: Although we cannot definitely prove the cause of the observed genetic novelty/diversification in South African Acacia dealbata populations, it cannot be attributable to insufficient sampling of native populations. Our study highlights the complexity of unravelling the introduction histories of commercially important alien species.


Subject(s)
Acacia/genetics , Genetic Variation , Microsatellite Repeats , Australia , Bayes Theorem , Introduced Species , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...