Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Catheter Cardiovasc Interv ; 87(2): 273-82, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26424295

ABSTRACT

OBJECTIVES AND BACKGROUND: Functional assessment of intermediate coronary stenosis during cardiac catheterization is conducted using diagnostic parameters like fractional flow reserve (FFR), coronary flow reserve (CFR), hyperemic stenosis resistance index (HSR), and hyperemic microvascular resistance (HMR). CDP (ratio of pressure drop across a stenosis to distal dynamic pressure), a nondimensional index derived from fundamental fluid dynamic principles, based on a combination of intracoronary pressure, and flow measurements may improve the functional assessment of coronary lesion severity. METHODS: Patient-level data pertaining to 350 intracoronary pressure and flow measurements across coronary stenoses was assessed to evaluate CFR, FFR, HSR, HMR, and CDP. CDP was calculated as (ΔP)/(0.5 × ρ × APV(2)). The density of blood (ρ) was assumed to be 1.05 g/cm(3). The correlation of current diagnostic parameters (CFR, FFR, HSR, and HMR) with CDP was evaluated. The receiver operating characteristic (ROC) curve was used to identify the optimal cut-off point of CDP, corresponding to the clinically used cut-off values (FFR = 0.80 and CFR = 2.0). RESULTS: CDP correlated significantly with FFR (r = 0.81, P < 0.05) and had significant diagnostic efficiency (ROC-area under curve of 86%), specificity (72%) and sensitivity (85%) at FFR < 0.8. The corresponding cut-off value for CDP to detect FFR < 0.8 was at CDP>25.4. CDP also correlated significantly (r = 0.98, P < 0.05) with epicardial-specific parameter, HSR. CONCLUSIONS: CDP, a functional parameter based on both intracoronary pressure and flow measurements, has close agreement (area under ROC curve = 86%) with FFR, the frequently used method of evaluating stenosis severity.


Subject(s)
Arterial Pressure , Cardiac Catheterization , Coronary Stenosis/diagnosis , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial , Aged , Area Under Curve , Coronary Angiography , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Female , Humans , Hyperemia/physiopathology , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Reproducibility of Results , Severity of Illness Index
2.
Ann Biomed Eng ; 42(8): 1681-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24806315

ABSTRACT

The assessment of functional coronary lesion severity using intracoronary hemodynamic parameters like the pressure-derived fractional flow reserve and the flow-derived coronary flow reserve are known to rely critically on the establishment of maximal hyperemia. We evaluated a hyperemia-free index, basal pressure drop coefficient (bCDP), that combines pressure and velocity for simultaneous assessment of the status of both epicardial and microvascular circulations. In 23 pigs, simultaneous measurements of distal coronary arterial pressure and flow were performed using a dual-sensor tipped guidewire in the settings of both normal and abnormal microcirculation with the presence of epicardial lesions of area stenosis (AS) < 50% and AS > 50%. The bCDP, a parameter based on fundamental fluid dynamics principles, was calculated as the transtenotic pressure-drop divided by the dynamic pressure in the distal vessel, measured under baseline (without hyperemia) conditions. The group mean values of bCDP for normal (84 ± 18) and abnormal (124.5 ± 15.6) microcirculation were significantly different. Similarly, the mean values of bCDP from AS < 50% (72.5 ± 16.1) and AS > 50% (136 ± 17.2) were also significantly different (p < 0.05). The bCDP could significantly distinguish between lesions of AS < 50% to AS > 50% under normal microcirculation (52.1 vs. 85.8; p < 0.05) and abnormal microcirculation (84.9 vs. 172; p < 0.05). Further, the bCDP correlated linearly and significantly with the hyperemic parameters FFR (r = 0.42, p < 0.05) and CDP (r = 0.50, p < 0.05). The bCDP is a promising clinical diagnostic parameter that can independently assess the severity of epicardial stenosis and microvascular impairment. We believe that it has an immediate appeal for detection of coronary artery disease if validated clinically.


Subject(s)
Arterial Pressure/physiology , Coronary Circulation/physiology , Microcirculation/physiology , Animals , Blood Flow Velocity , Coronary Stenosis/physiopathology , Coronary Vessels/physiology , Heart/physiology , Hyperemia/physiopathology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...