Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6771, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514763

ABSTRACT

Rapid metabolic responses to pathogens are essential for plant survival and depend on numerous transcription factors. Mediator is the major transcriptional co-regulator for integration and transmission of signals from transcriptional regulators to RNA polymerase II. Using four Arabidopsis Mediator mutants, med16, med18, med25 and cdk8, we studied how differences in regulation of their transcript and metabolite levels correlate to their responses to Pseudomonas syringae infection. We found that med16 and cdk8 were susceptible, while med25 showed increased resistance. Glucosinolate, phytoalexin and carbohydrate levels were reduced already before infection in med16 and cdk8, but increased in med25, which also displayed increased benzenoids levels. Early after infection, wild type plants showed reduced glucosinolate and nucleoside levels, but increases in amino acids, benzenoids, oxylipins and the phytoalexin camalexin. The Mediator mutants showed altered levels of these metabolites and in regulation of genes encoding key enzymes for their metabolism. At later stage, mutants displayed defective levels of specific amino acids, carbohydrates, lipids and jasmonates which correlated to their infection response phenotypes. Our results reveal that MED16, MED25 and CDK8 are required for a proper, coordinated transcriptional response of genes which encode enzymes involved in important metabolic pathways for Arabidopsis responses to Pseudomonas syringae infections.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Pseudomonas syringae , Phytoalexins , Glucosinolates/metabolism , Plants/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Plant , Plant Diseases/genetics , Cyclin-Dependent Kinase 8/genetics
2.
Cells ; 11(20)2022 10 19.
Article in English | MEDLINE | ID: mdl-36291157

ABSTRACT

Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant-symbiont and plant-microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant-microbe interactions that occur naturally.


Subject(s)
Endophytes , Insecticides , Humans , Fertilizers , Plants , Soil
3.
Int J Mol Sci ; 22(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430258

ABSTRACT

Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.


Subject(s)
Disease Resistance/genetics , Nitric Oxide/genetics , Plant Diseases/genetics , Transcription Factors/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Plant/genetics , Nitric Oxide/metabolism , Transcription, Genetic/genetics
4.
Plant Physiol Biochem ; 156: 384-395, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33007532

ABSTRACT

We investigated the role of AtbZIP62, an uncharacterized Arabidopsis bZIP TF, in oxidative, nitro-oxidative and drought stress conditions using reverse genetics approach. We further monitored the expression of AtPYD1 gene (orthologous to rice OsDHODH1 involved in the pyrimidine biosynthesis) in atbzip62 knock-out (KO) plants in order to investigate the transcriptional interplay of AtbZIP62 and AtPYD1. The atbzip62 KO plants showed significant increase in shoot length under oxidative stress, while no significant difference was recorded for root length compared to WT. However, under nitro-oxidative stress conditions, atbzip62 showed differential response to both NO-donors. Further characterization of AtbZIP62 under drought conditions showed that both atbzip62 and atpyd1-2 showed a sensitive phenotype to drought stress, and could not recover after re-watering. Transcript accumulation of AtbZIP62 and AtPYD1 showed that both were highly up-regulated by drought stress in wild type (WT) plants. Interestingly, AtPYD1 transcriptional level significantly decreased in atbzip62 exposed to drought stress. However, AtbZIP62 expression was highly induced in atpyd1-2 under the same conditions. Both AtbZIP62 and AtPYD1 were up-regulated in atnced3 and atcat2 while showing a contrasting expression pattern in atgsnor1-3. The recorded increase in CAT, POD, and PPO-like activities, the accumulation of chlorophylls and total carotenoids, and the enhanced proline and malondialdehyde levels would explain the sensitivity level of atbzip62 towards drought stress. All results collectively suggest that AtbZIP62 could be involved in AtPYD1 transcriptional regulation while modulating cellular redox state and photosynthetic processes. In addition, AtbZIP62 is suggested to positively regulate drought stress response in Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Droughts , Stress, Physiological , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/physiology , Transcription Factors/genetics
5.
Front Plant Sci ; 11: 1041, 2020.
Article in English | MEDLINE | ID: mdl-32765550

ABSTRACT

Advances in next-generation sequencing technologies facilitate the study of plant molecular functions in detail and with precision. Plant genome and proteome databases are continually being updated with large transcriptomic or genomic datasets. With the ever-increasing amount of sequencing data, several thousands of genes or proteins in public databases remain uncharacterized, and their domain functions are largely unknown. Such proteins contain domains of unknown function (DUF). In the present study, we identified 231 upregulated and 206 downregulated DUF genes from the available RNA-Seq-based transcriptome profiling datasets of Arabidopsis leaves exposed to a nitric oxide donor, S-nitroso-L-cysteine (CysNO). In addition, we performed extensive in silico and biological experiments to determine the potential functions of AtDUF569 and to elucidate its role in plant growth, development, and defense. We validated the expression pattern of the most upregulated and the most downregulated DUF genes from the transcriptomic data. In addition, a loss-of AtDUF569 function mutant was evaluated for growth, development, and defense against biotic and abiotic stresses. According to the results of the study, AtDUF569 negatively regulates biotic stress responses and differentially regulates plant growth under nitro-oxidative stress conditions.

6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138325

ABSTRACT

Salt stress is one of the most serious threats in plants, reducing crop yield and production. The salt overly sensitive (SOS) pathway in plants is a salt-responsive pathway that acts as a janitor of the cell to sweep out Na+ ions. Transcription factors (TFs) are key regulators of expression and/or repression of genes. The basic leucine zipper (bZIP) TF is a large family of TFs regulating various cellular processes in plants. In the current study, we investigated the role of the Arabidopsis thaliana bZIP62 TF in the regulation of SOS signaling pathway by measuring the transcript accumulation of its key genes such as SOS1, 2, and 3, in both wild-type (WT) and atbzip62 knock-out (KO) mutants under salinity stress. We further observed the activation of enzymatic and non-enzymatic antioxidant systems in the wild-type, atbzip62, atcat2 (lacking catalase activity), and atnced3 (lacking 9-cis-epoxycarotenoid dioxygenase involved in the ABA pathway) KO mutants. Our findings revealed that atbzip62 plants exhibited an enhanced salt-sensitive phenotypic response similar to atnced3 and atcat2 compared to WT, 10 days after 150 mM NaCl treatment. Interestingly, the transcriptional levels of SOS1, SOS2, and SOS3 increased significantly over time in the atbzip62 upon NaCl application, while they were downregulated in the wild type. We also measured chlorophyll a and b, pheophytin a and b, total pheophytin, and total carotenoids. We observed that the atbzip62 exhibited an increase in chlorophyll and total carotenoid contents, as well as proline contents, while it exhibited a non-significant increase in catalase activity. Our results suggest that AtbZIP62 negatively regulates the transcriptional events of SOS pathway genes, AtbZIP18 and AtbZIP69 while modulating the antioxidant response to salt tolerance in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/drug effects , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Sodium Chloride/pharmacology
7.
PeerJ ; 7: e7741, 2019.
Article in English | MEDLINE | ID: mdl-31608169

ABSTRACT

Short-term water submergence to soybean (Glycine max L.) create hypoxic conditions hindering plant growth and productivity. Nitric oxide (NO) is considered a stress-signalling and stress-evading molecule, however, little is known about its role during flooding stress. We elucidated the role of sodium nitroprusside (SNP) and S-nitroso L-cysteine (CySNO) as NO donor in modulation of flooding stress-related bio-chemicals and genetic determinants of associated nitrosative stress to Daewon and Pungsannamul soybean cultivars after 3 h and 6 h of flooding stress. The results showed that exogenous SNP and CysNO induced glutathione activity and reduced the resulting superoxide anion contents during short-term flooding in Pungsannamul soybean. The exo- SNP and CysNO triggered the endogenous S-nitrosothiols, and resulted in elevated abscisic acid (ABA) contents in both soybean cultivars overtime. To know the role of ABA and NO related genes in short-term flooding stress, the mRNA expression of S-nitrosoglutathione reductase (GSNOR1), NO overproducer1 (NOX1) and nitrate reductase (NR), Timing of CAB expression1 (TOC1), and ABA-receptor (ABAR) were assessed. The transcripts accumulation of GSNOR1, NOX1, and NR being responsible for NO homeostasis, were significantly high in response to early or later phases of flooding stress. ABAR and TOC1 showed a decrease in transcript accumulation in both soybean plants treated with exogenous SNP and CySNO. The exo- SNP and CySNO could impinge a variety of biochemical and transcriptional programs that can mitigate the negative effects of short-term flooding stress in soybean.

8.
PeerJ ; 7: e7383, 2019.
Article in English | MEDLINE | ID: mdl-31440429

ABSTRACT

Plant defense against pathogens and abiotic stresses is regulated differentially by communicating signal transduction pathways in which nitric oxide (NO) plays a key role. Here, we show the biological role of Arabidopsis thaliana wall-associated kinase (AtWAK) Like10 (AtWAKL10) that exhibits greater than a 100-fold change in transcript accumulation in response to the NO donor S-nitroso-L-cysteine (CysNO), identified from high throughput RNA-seq based transcriptome analysis. Loss of AtWAKL10 function showed a similar phenotype to wild type (WT) with, however, less branching. The growth of atwakl10 on media supplemented with oxidative or nitrosative stress resulted in differential results with improved growth following treatment with CysNO but reduced growth in response to S-nitrosoglutatione (GSNO) and methyl-viologen. Further, atwakl10 plants exhibited increased susceptibility to virulent Pseudomonas syringae pv tomato (Pst) DC3000 with a significant increase in pathogen growth and decrease in PR1 transcript accumulation compared to WT overtime. Similar results were found in response to Pst DC3000 avrB, resulting in increased cell death as shown by increased electrolyte leakage in atwakl10. Furthermore, atwakl10 also showed increased reactive oxygen species accumulation following Pst DC3000 avrB inoculation. Promoter analysis of AtWAKL10 showed transcription factor (TF) binding sites for biotic and abiotic stress-related TFs. Further investigation into the role of AtWAKL10 in abiotic stresses showed that following two weeks water-withholding drought condition most of the atwakl10 plants got wilted; however, the majority (60%) of these plants recovered following re-watering. In contrast, in response to salinity stress, atwakl10 showed reduced germination under 150 mM salt stress compared to WT, suggesting that NO-induced AtWAKL10 differentially regulates different abiotic stresses. Taken together, this study further elucidates the importance of NO-induced changes in gene expression and their role in plant biotic and abiotic stress tolerance.

9.
3 Biotech ; 9(7): 273, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31245237

ABSTRACT

This study monitored the transcriptional response of OsDHODH1 under nitrosative stress conditions relative to the transcripts accumulations for the core mitochondrial cytochrome c oxidase1 (CcOX1) subunit, nuclear CcOX subunits 5b and 5c, two rice nitrate reductases (OsNIA1 and OsNIA2), and nitric oxide excess 1 (OsNOE1) genes. Our findings reveal that short-term exposure of rice seedlings to 1 mM SNP (Nitric oxide donor) applied exogenously for 1 h resulted in significant down-regulation of OsDHODH1 expression in all rice cultivars. In addition, the transcriptional patterns for the CcOX subunits, which are known to have a high affinity for nitric oxide, showed that the core catalytic subunit (OsCcOX1) and the nuclear subunit (OsCcOX5b) were up-regulated, while the nuclear subunit (OsCcOX5c) gene expression was suppressed. OsGSNOR1 expression was enhanced or decreased concomitant with a decrease or increase in SNO accumulation, particularly at the basal level. Moreover, high OsNIA1 expression was consistent with impaired root development, whereas low transcript accumulation matched a balanced root-growth pattern. This suggests that OsNIA1 expression would prevail over OsNIA2 expression under nitrosative stress response in rice. The level of malondialdehyde (MDA) content increased with the increase in SNP concentration, translating enhanced oxidative damage to the cell. We also observed increased catalase activity in response to 5 mM SNP suggesting that potential cross-talk exist between nitrosative and oxidative stress. These results collectively suggest a possible role of OsDHODH1 and OsCcOX5b role in plant root growth during nitrosative stress responses.

10.
Genes (Basel) ; 10(3)2019 02 24.
Article in English | MEDLINE | ID: mdl-30813477

ABSTRACT

Plant stem cells are pluripotent cells that have diverse applications in regenerative biology and medicine. However, their roles in plant growth and disease resistance are often overlooked. Using high-throughput RNA-seq data, we identified approximately 20 stem cell-related differentially expressed genes (DEGs) that were responsive to the nitric oxide (NO) donor S-nitrosocysteine (CySNO) after six hours of infiltration. Among these DEGs, the highest number of positive correlations (R ≥ 0.8) was observed for CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) 12. Gene ontology (GO) terms for molecular function showed DEGs associated with signal transduction and receptor activity. A promoter study of these DEGs showed the presence of cis-acting elements that are involved in growth as well as the regulation of abiotic and biotic stress. Phylogenetic analysis of the Arabidopsis stem cell-related genes and their common orthologs in rice, soybean, poplar, and tomato suggested that most soybean stem cell-related genes were grouped with the Arabidopsis CLE type of stem cell genes, while the rice stem cell-related genes were grouped with the Arabidopsis receptor-like proteins. The functional genomic-based characterization of the role of stem cell DEGs showed that under control conditions, the clv1 mutant showed a similar phenotype to that of the wild-type (WT) plants; however, under CySNO-mediated nitrosative stress, clv1 showed increased shoot and root length compared to WT. Furthermore, the inoculation of clv1 with virulent Pst DC3000 showed a resistant phenotype with fewer pathogens growing at early time points. The qRT-PCR validation and correlation with the RNA-seq data showed a Pearson correlation coefficient of >0.8, indicating the significantly high reliability of the RNA-seq analysis.


Subject(s)
Arabidopsis Proteins/genetics , Genes, Plant , Nitric Oxide/metabolism , Protein Serine-Threonine Kinases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cysteine/analogs & derivatives , Cysteine/pharmacology , Gene Expression Regulation, Plant , Nitric Oxide Donors/pharmacology , Plant Cells/drug effects , Plant Cells/metabolism , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , S-Nitrosothiols/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism , Transcriptome
11.
Int J Mol Sci ; 20(2)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30669402

ABSTRACT

Populus davidiana, native to Korea and central Asian countries, is a major contributor to the Korean forest cover. In the current study, using high-throughput RNA-seq mediated transcriptome analysis, we identified about 87 P. davidiana WRKY transcription factors (PopdaWRKY TFs) that showed differential expression to dehydration stress in both sensitive and tolerant cultivars. Our results suggested that, on average, most of the WRKY genes were upregulated in tolerant cultivars but downregulated in sensitive cultivars. Based on protein sequence alignment, P. davidiana WRKYs were classified into three major groups, I, II, III, and further subgroups. Phylogenetic analysis showed that WRKY TFs and their orthologs in Arabidopsis and rice were clustered together in the same subgroups, suggesting similar functions across species. Significant correlation was found among qRT-PCR and RNA-seq analysis. In vivo analysis using model plant Arabidopsis showed that atwrky62 (orthologous to Potri.016G137900) knockout mutants were significantly sensitive to dehydration possibly due to an inability to close their stomata under dehydration conditions. In addition, a concomitant decrease in expression of ABA biosynthetic genes was observed. The AtHK1 that regulates stomatal movement was also downregulated in atwrky62 compared to the wild type. Taken together, our findings suggest a regulatory role of PopdaWRKYs under dehydration stress.


Subject(s)
Dehydration/genetics , Populus/genetics , Populus/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcriptome , Adaptation, Biological , Amino Acid Sequence , Chromosome Mapping , Computational Biology/methods , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Phenotype , Phylogeny , Plant Proteins , Signal Transduction
12.
BMC Plant Biol ; 19(1): 602, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888479

ABSTRACT

BACKGROUND: Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS: CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS: AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.


Subject(s)
Abscisic Acid/metabolism , Aldehyde Oxidase/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Cysteine/analogs & derivatives , Gene Expression Regulation, Plant , Nitric Oxide/metabolism , S-Nitrosothiols/metabolism , Aldehyde Oxidase/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/metabolism , Cysteine/metabolism , Signal Transduction
13.
J Plant Physiol ; 226: 12-21, 2018 07.
Article in English | MEDLINE | ID: mdl-29689430

ABSTRACT

Plant WRKY transcription factors play a vital role in abiotic stress tolerance and regulation of plant defense responses. This study examined AtWRKY11 and AtWRKY17 expression under ABA, salt, and osmotic stress at different developmental stages in Arabidopsis. We used reverse transcriptase PCR, quantitative real-time PCR, and promoter:GUS lines to analyze expression. Both genes were upregulated in response to abiotic stress. Next, we applied the same stressors to seedlings of T-DNA insertion wrky11 and 17 knock-out mutants (single and double). Under stress, the mutants exhibited slower germination and compromised root growth compared with the wild type. In most cases, double-mutant seedlings were more affected than single mutants. These results suggest that wrky11 and wrky17 are not strictly limited to plant defense responses but are also involved in conferring stress tolerance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant/physiology , Transcription Factors/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Stress, Physiological/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
14.
Sci Rep ; 8(1): 771, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335449

ABSTRACT

TFs are important proteins regulating plant responses during environmental stresses. These insults typically induce changes in cellular redox tone driven in part by promoting the production of reactive nitrogen species (RNS). The main source of these RNS is nitric oxide (NO), which serves as a signalling molecule, eliciting defence and resistance responses. To understand how these signalling molecules regulate key biological processes, we performed a large scale S-nitrosocysteine (CySNO)-mediated RNA-seq analysis. The DEGs were analysed to identify potential regulatory TFs. We found a total of 673 (up- and down-regulated) TFs representing a broad range of TF families. GO-enrichment and MapMan analysis suggests that more than 98% of TFs were mapped to the Arabidopsis thaliana genome and classified into pathways like hormone signalling, protein degradation, development, biotic and abiotic stress, etc. A functional analysis of three randomly selected TFs, DDF1, RAP2.6, and AtMYB48 identified a regulatory role in plant growth and immunity. Loss-of-function mutations within DDF1 and RAP2.6 showed compromised basal defence and effector triggered immunity, suggesting their positive role in two major plant defence systems. Together, these results imply an important data representing NO-responsive TFs that will help in exploring the core mechanisms involved in biological processes in plants.


Subject(s)
Arabidopsis/drug effects , Gene Expression Regulation, Plant , Nitric Oxide/metabolism , Stress, Physiological , Transcription Factors/biosynthesis , Transcriptome , Metabolic Networks and Pathways , Sequence Analysis, RNA
15.
Microbiol Res ; 205: 135-145, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28942839

ABSTRACT

Osmotic stress induced by drought can hinder the growth and yield of crop plants. To understand the eco-physiological role of osmoprotectants, the combined utilization of endophytes and osmolytes (trehalose) can be an ideal strategy used to overcome the adverse effects of drought. Hence, in the present study, we aimed to investigate the role of Sphingomonas sp. LK11, which produces phytohormones and synthesizes trehalose, in improving soybean plant growth under drought-induced osmotic stress (-0.4, -0.9, and -1.2MPa). The results showed that the inoculation of soybean plants with Sphingomonas sp. LK11 significantly increased plant length, dry biomass, photosynthetic pigments, glutathione, amino acids (proline, glycine, and glutamate), and primary sugars as compared to control plants under varying drought stresses. Trehalose applied to the plant with or without endophyte-inoculation also showed similar plant growth-promoting attributes under stress. Stress exposure significantly enhanced endogenous jasmonic (JA) and abscisic (ABA) acid contents in control plants. In contrast, Sphingomonas sp. LK11-inoculation significantly lowered ABA and JA levels in soybean plants, but these phytohormones increased in response to combined treatments during stress. The drought-induced osmotic stress resistance associated with Sphingomonas sp. LK11 and trehalose was also evidenced by increased mRNA gene expression of soybean dehydration responsive element binding protein (DREB)-type transcription factors (GmDREBa and GmDREB2) and the MYB (myeloblastosis) transcription factor (GmMYBJ1) as compared to the control. In conclusion, our findings demonstrated that inoculation with this endophyte and trehalose improved the negative effects of drought-induced osmotic stress, and it enhanced soybean plant growth and tolerance.


Subject(s)
Glycine max/microbiology , Glycine max/physiology , Osmotic Pressure , Sphingomonas/metabolism , Trehalose/metabolism , Abscisic Acid , Amino Acids/biosynthesis , Antioxidants , Carbohydrate Metabolism , Cyclopentanes , Droughts , Endophytes/metabolism , Glutathione/metabolism , Oxylipins , Plant Development , Plant Growth Regulators/metabolism , Plant Roots , Glycine max/genetics , Glycine max/growth & development , Stress, Physiological , Transcription Factors/metabolism
16.
3 Biotech ; 7(3): 209, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28667649

ABSTRACT

Populus davidiana is native to the Korean Peninsula and is one of the most dominant and abundantly growing forest trees in eastern Asia. Compared to other Populus species such as P. trichocarpa, P. euphratica, and P. tremula, relatively little is known about P. davidiana. Here, we performed transcriptomic analysis of P. davidiana under drought stress induced by 10% polyethylene glycol. A total of 12,403 and 12,414 differentially expressed genes (DEGs) were successfully annotated with the P. trichocarpa reference genome after 6 and 12 h of treatment, respectively. Of these, a total of 404 genes (238 up-regulated and 166 down-regulated) after 6 h and 359 genes (187 up-regulated and 172 down-regulated) after 12 h of treatment were identified as transcription factors. Transcription factors known to be key genes for drought stress response, such as AP2-EREB, WRKY, C2H2, and NAC, were identified. This results suggesting that early induction of these genes affected initiation of transcriptional regulation in response to drought stress. Quantitative real-time PCR results of selected genes showed highly significant (R = 0.93) correlation with RNA-Seq data. Interestingly, the expression pattern of some transcription factors was P. davidiana specific. The sequence of P. davidiana ortholog of P. trichocarpa gene POPTR_0018s10230, which plays an important role in plant response to drought, was further analyzed as our RNA-Seq results showed highly significant changes in the expression of this gene following the stress treatment. Sequence of the gene was compared to P. trichocarpa gene sequence using cloning-based sequencing. Additionally, we generated a predicted 3D protein structure for the gene product. Results indicated that the amino acid sequence of P. davidiana-specific POPTR_0018s10230 is different at six different positions compared to P. trichocarpa, resulting in a significantly different structure of the protein. Identifying the transcription factors expressed in P. davidiana under drought stress will not only offer clues for understanding the underlying mechanisms involved in drought stress physiology but also serve as a basis for future molecular studies on this species.

17.
Plant Physiol Biochem ; 106: 82-90, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27155375

ABSTRACT

Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.


Subject(s)
Genes, Plant , Plant Proteins/genetics , Plants/genetics , Adaptation, Physiological/genetics , Amino Acid Sequence , Arabidopsis/genetics , Conserved Sequence , Gene Expression Regulation, Plant , Gene Knockout Techniques , Heme/metabolism , Ligands , Mutation/genetics , Nucleotide Motifs/genetics , Oxidative Stress/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Domains , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...