Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958852

ABSTRACT

We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining-from biopsy samples taken before treatment-the effectiveness of neoadjuvant chemotherapy.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , Humans , RNA Polymerase II/genetics , Neoadjuvant Therapy , Protein Aggregates , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Helminthologia ; 60(2): 161-165, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37818174

ABSTRACT

The wild cat (Felis silvestris), spread in Romania from the Danube Delta to the mountain range is present in the Banat area, on the hunting ground that can be contaminated with different stage developmental forms of parasites, some of them having real zoonotic potential. The wild cat is an animal protected by the Romanian law of protection animals. Coprological samples from 88 wild cats from 16 hunting grounds, as well as the gastrointestinal tract collected from six wild cats cadavers and the molecular characterization of the cestodes identified in their intestines, allowed us to establish intestinal parasitic fauna. During coprological examination Isospora oocysts, tapeworm eggs, eggs of Toxocara cati, Ancylostoma spp. and Capillaria spp were found. At the same time, the form of genera Mesocestoides, Taenia, Toxocara/Toxascaris and Ancylostoma were identified at necropsy. Further polymerase chain reaction (PCR) identification revealed the species of Taenia taenieformis, and Mesocestoides litteratus, the latter providing a zoonotic potential. This study, the first in the western part of the country (Banat area, Timis County), provides information about the parasitic fauna of wild cats and underlines the importance of the human contamination risk.

3.
RNA ; 29(10): 1557-1574, 2023 10.
Article in English | MEDLINE | ID: mdl-37460154

ABSTRACT

Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , RecQ Helicases/genetics , Edetic Acid/metabolism , DNA Damage , RNA/metabolism , Ribonucleoproteins/genetics , Ribosomes/genetics , Ribosomes/metabolism
4.
R Soc Open Sci ; 9(4): 211948, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35425639

ABSTRACT

In the Northern Hemisphere, south is the conventional azimuth direction of fixed-tilt monofacial solar panels, because this orientation may maximize the received light energy. How does the morning-afternoon cloudiness asymmetry affect the energy-maximizing azimuth direction of such solar panels? Prompted by this question, we calculated the total light energy received by a fixed-tilt monofacial solar panel in a whole year, using the celestial motion of the Sun and the direct and diffuse radiation measured hourly throughout the year in three North American (Boone County, Tennessee, Georgia) and European (Italy, Hungary, Sweden) regions. Here we show that, depending on the tilt angle and the local cloudiness conditions, the energy-maximizing ideal azimuth of a solar panel more or less turns eastward from south, if afternoons are cloudier than mornings in a yearly average. In certain cases, the turn of the ideal azimuth of such solar panels may be worth taking into consideration, even though the maximum energy gain is not larger than 5% for nearly vertical panels. Specifically, when solar panels are fixed on vertical walls or oblique roofs with non-ideal tilt, the deviation of the energy-maximizing azimuth from the south can be incorporated in the design of buildings.

5.
Molecules ; 27(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335154

ABSTRACT

Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging Cu2O beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released. Effects of electropolishing on the quality and the Raman response of the grown graphene layers are studied by microtexture polarization analysis. The obtained data are compared with the Raman signal of graphene after transfer on glass substrate revealing the complex interaction of graphene with the Cu substrate.

6.
Sci Rep ; 12(1): 5007, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322122

ABSTRACT

Histone variants are different from their canonical counterparts in structure and are encoded by solitary genes with unique regulation to fulfill tissue or differentiation specific functions. A single H4 variant gene (His4r or H4r) that is located outside of the histone cluster and gives rise to a polyA tailed messenger RNA via replication-independent expression is preserved in Drosophila strains despite that its protein product is identical with canonical H4. In order to reveal information on the possible role of this alternative H4 we epitope tagged endogenous H4r and studied its spatial and temporal expression, and revealed its genome-wide localization to chromatin at the nucleosomal level. RNA and immunohistochemistry analysis of H4r expressed under its cognate regulation indicate expression of the gene throughout zygotic and larval development and presence of the protein product is evident already in the pronuclei of fertilized eggs. In the developing nervous system a slight disequibrium in H4r distribution is observable, cholinergic neurons are the most abundant among H4r-expressing cells. ChIP-seq experiments revealed H4r association with regulatory regions of genes involved in cellular stress response. The data presented here indicate that H4r has a variant histone function.


Subject(s)
Chromatin , Drosophila , Animals , Chromatin/genetics , Drosophila/genetics , Histones/genetics , Nucleosomes , Receptors, Histamine H4/genetics
7.
Open Biol ; 11(11): 210261, 2021 11.
Article in English | MEDLINE | ID: mdl-34784790

ABSTRACT

DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA, Single-Stranded/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Telomere-Binding Proteins/metabolism , Animals , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA Replication , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , Models, Molecular , Mutation , Protein Conformation , Structural Homology, Protein , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/genetics
8.
Sci Rep ; 11(1): 15797, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349136

ABSTRACT

There is a long-lasting debate about the possible functions of zebra stripes. According to one hypothesis, periodical convective air eddies form over sunlit zebra stripes which cool the body. However, the formation of such eddies has not been experimentally studied. Using schlieren imaging in the laboratory, we found: downwelling air streams do not form above the white stripes of light-heated smooth or hairy striped surfaces. The influence of stripes on the air stream formation (facilitating upwelling streams and hindering horizontal stream drift) is negligible higher than 1-2 cm above the surface. In calm weather, upwelling air streams might form above sunlit zebra stripes, however they are blown off by the weakest wind, or even by the slowest movement of the zebra. These results forcefully contradict the thermoregulation hypothesis involving air eddies.


Subject(s)
Air Movements , Body Temperature Regulation/physiology , Equidae/physiology , Hair Color/physiology , Hair/physiology , Sunlight , Animals
9.
Open Biol ; 11(5): 200408, 2021 05.
Article in English | MEDLINE | ID: mdl-33947246

ABSTRACT

Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/biosynthesis , Drosophila Proteins/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Histones/biosynthesis , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Histones/genetics
10.
Pol J Vet Sci ; 24(1): 145-149, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33847094

ABSTRACT

Resistance of cyathostomins to benzimidazole (BZ) anthelmintics is widespread in horses in many parts of the world. This study compared three methods for the determination of benzimidazole resistance of Cyathostominae in 18 horses from a stud farm in Romania. The horses were treated with Fenbendazole. The resistance test was performed by FECRT, ERP and PCR. On Day 0, larvae of species belonging to the Cyathostominae subfamily, types A, B, C, D and Gyalocephalus, as well as Strongylus vulgaris species of the Strongylinae subfamily, were identified. At 42 days post treatment with fenbendazole only larvae of Cyathostominae, types A and D were identified. Resistance to Fenbendazole was found in one horse, using the FECRT and ERP tests. Both genetic resistance and susceptibility to BZ anthelmintics was observed in 13 samples (72.22%) using the PCR test. However, three samples (16.67%) showed only the BZ-susceptibility gene. In 2 samples, (11.11%) only the resistance gene to BZ anthelmintics was identified. Several inconsistencies in the evidence of resistance to benzimidazole were observed between the PCR test and the other two methods, which indicates that several methods for determining and controlling the resistance should be used in practice.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance , Horse Diseases/parasitology , Strongylida Infections/veterinary , Strongylida/drug effects , Animals , Horses , Romania/epidemiology , Strongylida Infections/drug therapy , Strongylida Infections/epidemiology , Strongylida Infections/parasitology
11.
Inorg Chem ; 60(6): 3749-3760, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33647206

ABSTRACT

Two monoclinic polymorphs of [Ag(NH3)2]MnO4 containing a unique coordination mode of permanganate ions were prepared, and the high-temperature polymorph was used as a precursor to synthesize pure AgMnO2. The hydrogen bonds between the permanganate ions and the hydrogen atoms of ammonia were detected by IR spectroscopy and single-crystal X-ray diffraction. Under thermal decomposition, these hydrogen bonds induced a solid-phase quasi-intramolecular redox reaction between the [Ag(NH3)2]+ cation and MnO4- anion even before losing the ammonia ligand or permanganate oxygen atom. The polymorphs decomposed into finely dispersed elementary silver, amorphous MnOx compounds, and H2O, N2 and NO gases. Annealing the primary decomposition product at 573 K, the metallic silver reacted with the manganese oxides and resulted in the formation of amorphous silver manganese oxides, which started to crystallize only at 773 K and completely transformed into AgMnO2 at 873 K.

12.
Sci Rep ; 10(1): 21597, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299003

ABSTRACT

The mature inflorescence of sunflowers (Helianthus annuus) orients eastward after its anthesis (the flowering period, especially the maturing of the stamens), from which point it no longer tracks the Sun. Although several hypothetical explanations have been proposed for the ecological functions of this east facing, none have been tested. Here we propose an atmospheric-optical explanation. Using (i) astronomical data of the celestial motion of the Sun, (ii) meteorological data of diurnal cloudiness for Boone County located in the region from which domesticated sunflowers originate, (iii) time-dependent elevation angle of mature sunflower heads, and (iv) absorption spectra of the inflorescence and the back of heads, we computed the light energy absorbed separately by the inflorescence and the back between anthesis and senescence. We found that the inflorescences facing east absorb the maximum radiation, being advantageous for seed production and maturation, furthermore west facing would be more advantageous than south facing. The reason for these is that afternoons are cloudier than mornings in the cultivation areas of sunflowers. Since the photosynthesizing green back of mature heads absorbs maximal energy when the inflorescence faces west, maximizing the energy absorbed by the back cannot explain the east facing of inflorescences. The same results were obtained for central Italy and Hungary, where mornings are also less cloudy than afternoons. In contrast, in south Sweden, where mornings are cloudier than afternoons, west-facing mature inflorescences would absorb the maximum light energy. We suggest that the domesticated Helianthus annuus developed an easterly final orientation of its mature inflorescence, because it evolved in a region with cloudier afternoons.


Subject(s)
Helianthus/physiology , Inflorescence/physiology , Photosynthesis/physiology , Sunlight , Orientation , Weather
13.
Sci Rep ; 10(1): 20815, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257697

ABSTRACT

Cancer is a genetic disease caused by changes in gene expression resulting from somatic mutations and epigenetic changes. Although the probability of mutations is proportional with cell number and replication cycles, large bodied species do not develop cancer more frequently than smaller ones. This notion is known as Peto's paradox, and assumes stronger tumor suppression in larger animals. One of the possible tumor suppressor mechanisms involved could be replicative senescence caused by telomere shortening in the absence of telomerase activity. We analysed telomerase promoter activity and transcription factor binding in mammals to identify the key element of telomerase gene inactivation. We found that the GABPA transcription factor plays a key role in TERT regulation in somatic cells of small rodents, but its binding site is absent in larger beavers. Protein binding and reporter gene assays verify different use of this site in different species. The presence or absence of the GABPA TF site in TERT promoters of rodents correlates with TERT promoter activity; thus it could determine whether replicative senescence plays a tumor suppressor role in these species, which could be in direct relation with body mass. The GABPA TF binding sites that contribute to TERT activity in somatic cells of rodents are analogous to those mutated in human tumors, which activate telomerase by a non-ALT mechanism.


Subject(s)
Body Size , GA-Binding Protein Transcription Factor/metabolism , Promoter Regions, Genetic/genetics , Rodentia/genetics , Telomerase/genetics , Animals , Binding Sites , Cell Line , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Humans , Mice , Mutation , Rats , Transcription Factor 3/metabolism , ets-Domain Protein Elk-1/metabolism
14.
Nucleic Acids Res ; 48(16): 9007-9018, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32710625

ABSTRACT

In most animals, the start of embryogenesis requires specific histones. In Drosophila linker histone variant BigH1 is present in early embryos. To uncover the specific role of this alternative linker histone at early embryogenesis, we established fly lines in which domains of BigH1 have been replaced partially or completely with that of H1. Analysis of the resulting Drosophila lines revealed that at normal temperature somatic H1 can substitute the alternative linker histone, but at low temperature the globular and C-terminal domains of BigH1 are essential for embryogenesis. In the presence of BigH1 nucleosome stability increases and core histone incorporation into nucleosomes is more rapid, while nucleosome spacing is unchanged. Chromatin formation in the presence of BigH1 permits the fast-paced nuclear divisions of the early embryo. We propose a model which explains how this specific linker histone ensures the rapid nucleosome reassembly required during quick replication cycles at the start of embryogenesis.


Subject(s)
Cell Nucleus Division , Chromatin/metabolism , Drosophila Proteins/physiology , Drosophila/embryology , Histones/metabolism , Nucleosomes/metabolism , Animals , Chromatin Assembly and Disassembly , Embryo, Nonmammalian , Embryonic Development , Histones/physiology
15.
New Phytol ; 228(5): 1535-1547, 2020 12.
Article in English | MEDLINE | ID: mdl-32538474

ABSTRACT

In order to identify the most relevant environmental parameters that regulate flowering time of bulbous perennials, first flowering dates of 329 taxa over 33 yr are correlated with monthly and daily mean values of 16 environmental parameters (such as insolation, precipitation, temperature, soil water content, etc.) spanning at least 1 yr back from flowering. A machine learning algorithm is deployed to identify the best explanatory parameters because the problem is strongly prone to overfitting for traditional methods: if the number of parameters is the same or greater than the number of observations, then a linear model can perfectly fit the dependent variable (observations). Surprisingly, the best proxy of flowering date fluctuations is the daily snow depth anomaly, which cannot be a signal itself, however it should be related to some integrated temperature signal. Moreover, daily snow depth anomaly as proxy performs much better than mean soil temperature preceding the flowering, the best monthly explanatory parameter. Our findings support the existence of complicated temperature sensing mechanisms operating on different timescales, which is a prerequisite to precisely observe the length and severity of the winter season and translate for example, 'lack of snow' information to meaningful internal signals related to phenophases.


Subject(s)
Climate Change , Snow , Flowers , Plant Physiological Phenomena , Seasons , Soil , Temperature
16.
J Nanobiotechnology ; 18(1): 18, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964403

ABSTRACT

BACKGROUND: Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. RESULTS: We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. CONCLUSIONS: Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.


Subject(s)
Antineoplastic Agents/chemistry , Cancer-Associated Fibroblasts/drug effects , Metal Nanoparticles/chemistry , Neoplasm Metastasis/drug therapy , Alloys/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement , Cell Survival , Disease Progression , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation, Neoplastic , Gold/chemistry , Humans , Metal Nanoparticles/therapeutic use , Mice, Inbred BALB C , Neoplasm Metastasis/pathology , Neoplasm Transplantation , Silver/chemistry , Tumor Microenvironment/drug effects
17.
R Soc Open Sci ; 6(10): 191119, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31824718

ABSTRACT

From a large distance tabanid flies may find their host animal by means of its shape, size, motion, odour, radiance and degree of polarization of host-reflected light. After alighting on the host, tabanids may use their mechano-, thermo-, hygro- and chemoreceptors to sense the substrate characteristics. Female tabanids prefer to attack sunlit against shady dark host animals, or dark against bright hosts for a blood meal, the exact reasons for which are unknown. Since sunlit darker surfaces are warmer than shady ones or sunlit/shady brighter surfaces, the differences in surface temperatures of dark and bright as well as sunlit and shady hosts may partly explain their different attractiveness to tabanids. We tested this observed warmth preference in field experiments, where we compared the attractiveness to tabanids (Tabanus tergestinus) of a warm and a cold shiny black barrel imitating dark hosts with the same optical characteristics. Using imaging polarimetry, thermography and Schlieren imaging, we measured the optical and thermal characteristics of both barrels and their small-scale models. We recorded the number of landings on these targets and measured the time periods spent on them. Our study revealed that T. tergestinus tabanid flies prefer sunlit warm shiny black targets against sunlit or shady cold ones with the same optical characteristics. These results support our new hypothesis that a blood-seeking female tabanid prefers elevated temperatures, partly because her wing muscles are more rapid and her nervous system functions better (due to faster conduction velocities and synaptic transmission of signals) in a warmer microclimate, and thus, she can avoid the parasite-repelling reactions of host animals by a prompt take-off.

18.
Materials (Basel) ; 12(11)2019 May 28.
Article in English | MEDLINE | ID: mdl-31141883

ABSTRACT

In this study, Bi2WO6 was prepared by the hydrothermal method. The effects of reaction temperature (150/170/200 °C) and reaction time (6/12/24 h) were investigated. The role of strongly acidic pH (1 >) and the full range between 0.3 and 13.5 were studied first. Every sample was studied by XRD and SEM; furthermore, the Bi2WO6 samples prepared at different temperatures were examined in detail by EDX and TEM, as well as FT-IR, Raman and UV-vis spectroscopies. It was found that changing the temperature and time slightly influenced the crystallinity and morphology of the products. The most crystallized product formed at 200 °C, 24 h. The pure, sheet-like Bi2WO6, prepared at 200 °C, 24 h, and 0.3 pH, gradually transformed into a mixture of Bi2WO6 and Bi3.84W0.16O6.24 with increasing pH. The nanosheets turned into a morphology of mixed shapes in the acidic range (fibers, sheets, irregular forms), and became homogenous cube- and octahedral-like shapes in the alkaline range. Their band gaps were calculated and were found to vary between 2.66 and 2.59 eV as the temperature increased. The specific surface area measurements revealed that reducing the temperature favors the formation of a larger surface area (35.8/26/21.6 m2/g belonging to 150/170/200 °C, respectively).

19.
J Nanosci Nanotechnol ; 19(1): 498-501, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30327062

ABSTRACT

In this study the effects of various anions (SO2-4, ClO-4 and PO3-4) were investigated on the hydrothermal treatment of WO3 from Na2WO4 and HCl at 180 and 200 °C. The products were analyzed by XRD and SEM. With the usage of SO2-4 the obtained product was hexagonal (h-) WO3 in the form of nanorods at both temperatures. Applying ClO-4 resulted in a mixture of WO3·0.33H2O and small amount of m-WO3 at 180 °C and pure WO3·0.33H2O at 200 °C. The morphology was consisted of cuboid shapes arranged into spherical structures at 180 °C and longitudinal ones at 200 °C. By the application of PO3-4 no product formed at either temperature. Using the combination of SO2-4, and ClO-4 the product was h-WO3 at both 180 and 200 °C with rod-like crystals; thus, the effect of ClO-4 was overdominated by the SO2-4ions. Utilization of PO3-4 together with SO2-4, and/or ClO-4 resulted again in no product, meaning that adding PO3-4 to the reaction mixture completely blocks the hydrothermal formation of solid products by forming water soluble phosphotungstic acids.

20.
Inorg Chem ; 57(21): 13679-13692, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30351069

ABSTRACT

[NH4Cu(OH)MoO4] as active photocatalyst in the decomposition of Congo Red when irradiated by UV or visible light has been prepared in an unusual ammonia/water ligand exchange reaction of [tetraamminecopper(II)] molybdate, [Cu(NH3)4]MoO4. [Cu(NH3)4]MoO4 was subjected to moisture of open air at room temperature. Light blue orthorhombic [Cu(NH3)(H2O)3]MoO4 was formed in 2 days as a result of an unexpected solid/gas phase ammonia-water ligand exchange reaction. This complex does not lose its last ammonia ligand on further standing in open air; however, a slow quasi-intramolecular (self)-protonation reaction takes place in 2-4 weeks, producing a yellowish-green microcrystalline material, which has been identified as a new compound, [NH4Cu(OH)MoO4], ( a = 10,5306 Å, b = 6.0871 Å, c = 8.0148 Å, ß = 64,153°, C2, Z = 4). Mechanisms are proposed for both the sequential ligand exchange and the self-protonation reactions supported by ab initio quantum-chemical calculations and deuteration experiments as well. The [Cu(NH3)(H2O)3]MoO4 intermediate transforms into NH4Cu(OH)(H2O)2MoO4, which loses two waters and yields [NH4Cu(OH)MoO4]. Upon heating, both [Cu(NH3)4]MoO4 and [Cu(NH3)(H2O)3]MoO4 decompose, losing three NH3 and three H2O ligands, respectively, and stable [Cu(NH3)MoO4] is formed from both. The latter can partially be hydrated in boiling water into [NH4Cu(OH)MoO4. This compound can also be prepared in pure form by boiling the saturated aqueous solution of [Cu(NH3)4]MoO4. All properties of [NH4Cu(OH)MoO4] match those of the active photocatalyst described earlier in the literature under the formulas (NH4)2[Cu(MoO4)2] and (NH4)2Cu4(NH3)3Mo5O20.

SELECTION OF CITATIONS
SEARCH DETAIL
...