Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(5): 053532, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243312

ABSTRACT

This contribution presents a Thomson scattering module developed for the Raysect and Cherab framework. Detailed models of spectroscopic diagnostic systems can be created in the framework, which deliver synthetic data with high precision due to accurate physical treatment of ray propagation and radiation phenomena. The addition of the presented module will allow us to model Thomson scattering systems that can aid both data validation and design. Two examples of such application are given. The first example shows the application of the module on the COMPASS tokamak edge Thomson scattering diagnostic and experimental data. The second example shows the possibility to use the framework and the Thomson scattering module as a design support tool.

2.
Rev Sci Instrum ; 85(11): 11E433, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430340

ABSTRACT

The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.

3.
Rev Sci Instrum ; 83(10): 10E531, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23130804

ABSTRACT

The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In the SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.

SELECTION OF CITATIONS
SEARCH DETAIL
...