Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(7): e0299937, 2024.
Article in English | MEDLINE | ID: mdl-38968297

ABSTRACT

Lake ice is an important socio-economic resource that is threatened by climate change. The cover and duration of lake ice are expected to decline as air temperatures warm in the coming decades, disrupting a previously reliable source of income for many activities dependent on lake ice. The economic consequences of climate-induced lake ice loss remain unexplored, creating a significant research gap. The purpose of this study was to quantify the monetary spending associated with lake ice and how climate change may impact that value. Using a series of General Circulation Models (GCMs), greenhouse gas emissions scenarios, and models for lake ice cover, we predicted changes in lake ice by the end of the 21st century for the Northern Hemisphere. We also synthesized examples of spending associated with lake ice activities and discussed the potential implications expected with declining ice cover. We found that lake ice will decrease in area by 44,000-177,000 km2 and shorten in duration by 13-43 days by 2100. Using 31 examples of revenue from lake ice, we found that lake ice generates spending of over USD 2.04 billion to local communities and economies. We also found that countries predicted to experience the greatest ice loss by the end of the century are those that currently have the largest GDP, highest greenhouse gas emissions, and are most dependent on freshwater withdrawal. Our findings confirm predicted losses in lake ice that are expected because of climate change and quantify some of the potential consequences for local communities. Here we highlight lake ice as another casualty of human-caused climate change that will have profound socio-economic implications.


Subject(s)
Climate Change , Ice Cover , Lakes , Humans , Greenhouse Gases/analysis
2.
Sci Data ; 7(1): 310, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32963248

ABSTRACT

Measures of chlorophyll represent the algal biomass in freshwater lakes that is often used by managers as a proxy for water quality and lake productivity. However, chlorophyll concentrations in lakes are dependent on many interacting factors, including nutrient inputs, mixing regime, lake depth, climate, and anthropogenic activities within the watershed. Therefore, integrating a broad scale dataset of lake physical, chemical, and biological characteristics can help elucidate the response of freshwater ecosystems to global change. We synthesized a database of measured chlorophyll a (chla) values, associated water chemistry variables, and lake morphometric characteristics for 11,959 freshwater lakes distributed across 72 countries. Data were collected based on a systematic review examining 3322 published manuscripts that measured lake chla, and we supplemented these data with online repositories such as The Knowledge Network for Biocomplexity, Dryad, and Pangaea. This publicly available database can be used to improve our understanding of how chlorophyll levels respond to global environmental change and provide baseline comparisons for environmental managers responsible for maintaining water quality in lakes.


Subject(s)
Chlorophyll A/analysis , Lakes/chemistry , Water Quality , Water/chemistry , Biomass , Internationality
SELECTION OF CITATIONS
SEARCH DETAIL
...