Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 58(8): 5109-13, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20359248

ABSTRACT

Carrots are one of the highest dietary sources of beta-carotene and are naturally high in the (all-E)-beta-carotene isomer, which has higher bioavailability, provitamin A activity, and antioxidant capacity compared to Z (cis) isomers. The objectives of the present study were to investigate the effects of storage temperature, time, and cooking (boiling for 15 min) on the levels of carotene isomers in 'Stefano' carrots. Storing carrots at either 4 degrees C to simulate long-term storage or 20 degrees C to simulate marketing practices resulted in increases in (all-E)-beta-carotene of 20.3% after 3 days at 4 degrees C and 34.4% after 14 days at 20 degrees C, respectively. The levels of Z isomers in raw carrots were low with (13Z)-beta-carotene and (9Z)-beta-carotene accounting for less that 1.8% of the total beta-carotene present. Levels of (9Z)-beta-carotene decreased during storage at either temperature, whereas storage at 4 degrees C resulted in a 109% increase in (13Z)-beta-carotene after 56 days. Cooking significantly increased the levels of (13Z)-beta-carotene and (9Z)-beta-carotene and resulted in the production of (15Z)-beta-carotene, which was absent in raw carrots. Storage at 4 degrees C for 15 days or more prior to cooking reduced the susceptibility of (all-E)-beta-carotene to thermal isomerization during cooking, resulting in lower levels of all three Z-beta-carotene isomers being generated, while storage at 20 degrees C for up to 21 days resulted in significantly higher levels of (all-E)-beta-carotene before and after cooking but had no effect on Z-isomer production during cooking. Consequently, we conclude that, for the greatest health benefit, fresh carrots can be stored for up to 21 days at 20 degrees C or at 4 degrees C for up to 56 days without significant reduction in (all-E)-beta-carotene and should be consumed raw or boiled for less than 15 min to limit Z-beta-carotene isomer formation.


Subject(s)
Cooking , Daucus carota/chemistry , beta Carotene/chemistry , Isomerism
2.
Phytochemistry ; 69(8): 1671-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18396302

ABSTRACT

Glucosinolates are naturally occurring anionic secondary plant metabolites incorporating a thioglucosidic link to the carbon of a sulphonated oxime. There are a large number of naturally occurring glucosinolates and they are found in relatively large quantities in many plant species within the family Crucifereae. These metabolites are of interest for both their anticancer and flavour properties and in the study of nitrogen and sulphur metabolism in model plants such as Arabidopsis. Parent ion mapping is an analytical mass spectrometry approach that allows rapid assessment of glucosinolate content. Ion mapping proved to be highly sensitive and the glucosinolate sinigrin could be detected at three parts per trillion. This method takes advantage of the glucosinolate anion fragmentation which consistently produces a sulphonate ring-opened glucose moiety in the ion trap mass spectrometer, m/z 259. An intramolecular transfer mechanism for this fragmentation is presented here for the first time. This fragmentation can be exploited as a general identifier of the glucosinolate class of metabolites in plant extracts and in LCMSn can be employed provide positive identification and quantification of individual glucosinolates. Such approaches offer sensitive tools for focused metabolomics analysis and screening of plant breeding lines.


Subject(s)
Glucosinolates/chemistry , Brassica/chemistry , Brassica napus/chemistry , Glucosinolates/analysis , Glucosinolates/metabolism , Molecular Structure , Mustard Plant/chemistry , Seeds/chemistry , Spectrometry, Mass, Electrospray Ionization
3.
J Agric Food Chem ; 54(13): 4855-60, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16787039

ABSTRACT

The flavonoid composition of immature leaves of pak choi [Brassica rapa L. ssp. chinensis L. (Hanelt.)] was investigated. Flavonol aglycone content was measured in 11 pak choi varieties, indicating significant differences (P < 0.05) in content between varieties and relatively high contents of kaempferol and isorhamnetin. Levels of quercetin ranged from 3.2 to 6.1 mg/100 g of dry weight (DW), whereas levels of isorhamnetin and kaempferol were significantly higher (8.1-35.1 and 36.0-102.6 mg/100 g of DW, respectively). A large number of glycoside and hydroxycinnamic acid derivatives of quercetin, kaempferol, and isorhamnetin were identified in cv. 'Shanghai' by LC/UV-DAD/ESI-MS/MS. The UV-DAD data allowed identification of hydroxycinnamic acid derivatives, but detailed MS/MS fragmentations were required for the structure elucidation. Pak choi could be a potentially important source of dietary flavonols, in particular, kaempferol and isorhamnetin.


Subject(s)
Brassica rapa/chemistry , Chromatography, High Pressure Liquid , Flavonols/analysis , Mass Spectrometry , Plant Leaves/chemistry , Coumaric Acids/analysis , Glycosides/analysis , Kaempferols/analysis , Quercetin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL