Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
PLoS One ; 16(12): e0259551, 2021.
Article in English | MEDLINE | ID: mdl-34890401

ABSTRACT

BACKGROUND: Individuals recovering from COVID-19 are known to have antibodies against the Spike and other structural proteins. Antibodies against Spike have been shown to display viral neutralization. However, not all antibodies against Spike have neutralizing ability although they may be cross-reactive. There is a need for easy-to-use SARS-CoV-2 neutralizing assays for the determination of virus-neutralizing activity in sera of individuals. Here we describe a PCR-based micro-neutralization assay that can be used to evaluate the viral neutralization titers of serum from SARS-CoV-2 infected individuals. METHODS: The SARS-CoV-2 strain used was isolated from a nasopharyngeal specimen of a COVID-19 case. The limiting dilution method was used to obtain a 50% tissue culture infective dose (TCID50) of Vero cells. For the micro-neutralization assay, 19 serum samples, with positive IgG titers against Spike Receptor-Binding Domain (RBD) were tested. After 24 hours, infected cells were inspected for the presence of a cytopathic effect, lysed and RNA RT-PCR conducted for SARS-CoV-2. PCR target Ct values were used to calculate percent neutralization/inhibition of SARS-CoV-2. RESULTS: Out of 19 samples, 13 samples gave 100% neutralization at all dilutions, 1 sample showed neutralization at the first dilution, 4 samples showed neutralization at lower dilutions, while one sample did not demonstrate any neutralization. The RBD ODs and neutralization potential percentages were found to be positively correlated. CONCLUSION: We describe a rapid RT-PCR-based SARS-CoV-2 microneutralization assay for the detection of neutralizing antibodies. This can effectively be used to test the antiviral activity of serum antibodies for the investigation of both disease-driven and vaccine-induced responses.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing , Neutralization Tests/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Humans
3.
Infect Prev Pract ; 3(3): 100116, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34316582

ABSTRACT

BACKGROUND: Due to COVID-19, thousands of healthcare workers have been affected and have lost their lives in the line of duty. For the protection of healthcare workers, WHO and CDC have made standard guidelines and requirements for PPE use. N95 masks are amongst the most readily used PPE by healthcare professionals and it is highly recommended by OSHA that every make and model of N95 should go through a fit test at least once in a year. METHOD: A total of 30 randomly selected healthcare professionals (who were a regular user of N95 respiratory masks) were subjected to assess in-house (saccharin sodium benzoate) reagent for use for standard qualitative fit testing in our hospital. Threshold testing with the in-house reagent at three different concentrations was performed prior to establish participants' sensitivity to the reagent. After successful completion of threshold testing, fit test was performed on participants wearing an N95 mask. RESULTS: All the participants included in the study passed the sensitivity testing with three concentrations of the reagents, while it was concluded that the concentration of the in-house reagent that was well suited for the sensitivity testing was a concentration of 1g/dl saccharin with 10g/dl sodium benzoate. For fit testing 12g/dl was found to be more appropriate. DISCUSSION: Our study provided a low cost solution to ensure safety of healthcare workers who are regular users of N95 masks following guidelines implemented by OSHA and CDC. CONCLUSION: The in-house test solution prepared was found to be equally sensitive to its commercially available counterpart.

4.
J Pak Med Assoc ; 71(5): 1467-1471, 2021 May.
Article in English | MEDLINE | ID: mdl-34091636

ABSTRACT

In December 2016 physicians in Karachi, Pakistan,witnessed an increase in patients presenting with febrile illness and severe polyarthralgia. Subsequently, chikungunya virus (CHIKV)) was isolated from three patients. This virus was sequenced and compared with other isolates of CHIKV obtained in India and Pakistan during recent outbreaks. Phylogenetic analysis indicated that the Karachi isolates were most similar to the East Central South African CHIKV lineage and showed sequence homology to isolates obtained in other parts of Pakistan and India. More importantly, two of the CHIKV isolates had a nucleotide substitution in the E1 gene corresponding to an amino acid change at chain F portion of the E1 protein.


Subject(s)
Chikungunya Fever , Chikungunya Fever/epidemiology , Disease Outbreaks , Humans , India/epidemiology , Pakistan/epidemiology , Phylogeny
5.
Front Public Health ; 8: 287, 2020.
Article in English | MEDLINE | ID: mdl-32626679

ABSTRACT

Dengue virus (DENV) is the most common and widespread arboviral infection worldwide. Though all four DENV serotypes cocirculate in nature, the clinicopathological framework of these serotypes is undefined in Pakistan. A cross-sectional, observational study was performed to document the circulation of various arboviruses in the Sindh region of Pakistan. Here we describe a population of patients diagnosed with DENV spanning a 2-year period. This study used an orthogonal system of NS1 antigen ELISA followed by RT-PCR for DENV detection and subtyping. A total of 168 NS1 positive patients were evaluated of which 91 patients were serotyped via RT-PCR. There was no significant difference between sex or age for infection risk and peak transmission occurred during the Autumn months. DENV2 was the most common serotype followed by DENV1 then DENV3, then DENV4. The data show that DENV1 patients were more likely to have abnormal liver function tests; DENV2 infected patients were more likely to exhibit arthralgia and neurological symptoms; DENV3 patients were more likely to complain of burning micturition and have elevated lymphocyte counts and low hematocrit; and DENV4 patients were more likely to report headaches and rash. Notably, no dengue hemorrhagic fever or other manifestations of severe dengue fever were present in patients with primary or secondary infections. We were able to identify significantly more NS1 antigen positive patients than RT-PCR. This study demonstrates that all four DENV serotypes are co-circulating and co-infecting in Pakistan.


Subject(s)
Dengue Virus , Dengue , Severe Dengue , Cross-Sectional Studies , Dengue/diagnosis , Dengue Virus/genetics , Humans , Pakistan/epidemiology , Severe Dengue/diagnosis
6.
Trop Med Infect Dis ; 5(1)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138262

ABSTRACT

Zika virus (ZIKV) circulates as two separate lineages, with significant genetic variability between strains. Strain-dependent activity has been reported for dengue virus, herpes simplex virus and influenza. Strain-dependent activity of subject specimens to a virus could be an impediment to serological diagnosis and vaccine development. In order to determine whether ZIKV exhibits strain-dependent activity when exposed to antibodies, we measured the neutralizing properties of polyclonal serum and three monoclonal antibodies (ZKA185, 753(3)C10, and 4G2) against three strains of ZIKV (MR-766, PRVABC59, and R103454). Here, MR-766 was inhibited almost 60% less by ZKA185 than PRVABC59 and R103454 (p = 0.008). ZKA185 enhanced dengue 4 infection up to 50% (p = 0.0058). PRVABC59 was not inhibited by mAb 753(3)C10 while MR-766 and R103453 were inhibited up to 90% (p = 0.04 and 0.036, respectively). Patient serum, regardless of exposure history, neutralized MR-766 ~30%-40% better than PRVABC56 or R103454 (p = 0.005-0.00007). The most troubling finding was the significant neutralization of MR-766 by patients with no ZIKV exposure. We also evaluated ZIKV antibody cross reactivity with various flaviviruses and found that more patients developed cross-reactive antibodies to Japanese encephalitis virus than the dengue viruses. The data here show that serological diagnosis of ZIKV is complicated and that qualitative neutralization assays cannot discriminate between flaviviruses.

7.
Front Public Health ; 6: 186, 2018.
Article in English | MEDLINE | ID: mdl-30042937

ABSTRACT

Several arboviruses are endemic to and co-circulate in Pakistan. In recent years, Pakistan has observed a rise in arboviral infections. A cross-sectional study for arboviral diseases, which included screening for Chikungunya virus (CHIKV), was initiated in 2015 to determine which pathogens were causing disease in patients presenting to health care services. Exposure to CHIKV was verified via detection of viral nucleic acids or virus-specific IgM with virus-specific neutralizing antibodies. Out of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 102 patients were positive for CHIKV IgM antibodies and 60 patients were positive for CHIKV nucleic acids or neutralizing antibodies. The data presented here show that CHIKV has been circulating in Pakistan since April of 2015. CHIKV infections were detected in study subjects up to the conclusion of our enrollment period in July 2017. Syndromic and clinical data show that arthralgia was associated with CHIKV as was rash, fever greater than 38°C, and lymphopenia. Neurological symptoms were reported in 49% of CHIKV suspect patients and in 46.6% of confirmed infections. Acute disseminated encephalomyelitis was diagnosed in 5% of confirmed infection and various manifestation of encephalitis diagnosed in an additional 16.6% of patients with confirmed CHIKV infections. CHIKV-exposed patients were just as likely to present with neurological symptoms and encephalitis as patients with West Nile Virus infections but were 4.57 times more likely to have lymphopenia. This proportion of neurological symptoms may be a complicating factor in countries where WNV and/or JEV co-circulate with CHIKV.

8.
Front Public Health ; 6: 20, 2018.
Article in English | MEDLINE | ID: mdl-29535994

ABSTRACT

Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate.

10.
Tuberculosis (Edinb) ; 107: 20-30, 2017 12.
Article in English | MEDLINE | ID: mdl-29050768

ABSTRACT

It is challenging to understand mechanisms of drug resistance in Mycobacterium tuberculosis (MTB) due to the large variability in resistance associated genes. Efflux pump genes contribute to drug resistance and thus add to this complexity. Efflux pump gene protein superfamilies have been characterized by genome analysis of drug resistant strains and through in vitro transcriptional studies. However, there is limited information regarding efflux pump genes in extensively drug resistant (XDR) tuberculosis (TB) isolates. Whole genome sequencing (WGS) based analysis of 37 extensively drug resistant (XDR) and five drug sensitive (DS) MTB clinical isolates was performed. Single nucleotide polymorphisms (SNPs) in efflux pump genes Rv0194, Rv1217, Rv1218, drrA, drrB, Rv1258, Rv1634, Rv2688, Rv1273, Rv1819, Rv1458, Rv1877 and Rv1250 were determined in the clinical isolates as compared with the H37Rv reference strain. Allele frequencies of SNPs identified in XDR strains were compared with DS strains. Gene expression of Rv0194, Rv2688, Rv1634, drrA and drrB was determined in XDR -TB isolates (n = 9), DS-TB strains (n = 4) and H37Rv. We identified SNPs in XDR-TB isolates which were either unique or present at very low frequencies in DS strains; Rv0194 G170V; Rv1217 L151R; Rv1258 P369T and G391R; Rv1273 S118G and I175T; Rv1877 I534T; Rv1250 V318X/A and S333A, and Rv2688 P156T. The expression of Rv2688 and drrB was found to be raised in XDR-TB as compared with DS-TB strains. We identified unique SNPs in efflux pump genes which may be associated with increased drug resistance in the isolates. Increased levels of Rv2688 and drrB efflux pump gene expression observed in XDR strains even in the absence of antibiotics suggests that these clinical isolates may be more refractory to treatment. Further studies are required to directly associate these mutations with increased resistance in MTB.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Membrane Transport Proteins/genetics , Mutation , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , ATP-Binding Cassette Transporters/genetics , Antitubercular Agents/metabolism , Antitubercular Agents/therapeutic use , Bacterial Proteins/metabolism , Bacteriological Techniques , DNA Mutational Analysis , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Genotype , Humans , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Pakistan , Whole Genome Sequencing
11.
Int J Mycobacteriol ; 5 Suppl 1: S150, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28043519

ABSTRACT

INTRODUCTION: Extensively drug-resistant tuberculosis (XDR-TB) is defined as tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) strains that are multidrug resistant (MDR) and also resistant to a fluoroquinolone and to one injectable aminoglycoside or capreomycin. Whilst resistance in MTB has been associated with single nucleotide polymorphisms (SNPs), efflux pumps are thought to play a role in conferring resistance to MTB but little is known about them. METHODS: We studied XDR MTB (n=10) strains characterized by whole genome sequencing (WGS; http://www.ebi.ac.uk/ena/data/view/PRJEB7798). Phenotypic susceptibility testing was performed by the MGIT 960 (Becton, Dickinson and Co., NJ, USA) method. All XDR MTB strains were resistant to at least seven drugs whilst one XDR MTB strain, X54 was resistant to isoniazid, rifampicin, pyrazinamide, streptomycin, ethambutol, fluoroquinolones, capreomycin, kanamycin, amikacin, and ethionamide. The mRNA expression of efflux candidate genes Rv0194, Rv2688c, Rv1634, drrA, and drrB was determined in XDR MTB strains as compared with the ATCC reference strain, H37Rv, and drug-susceptible (DS) MTB (n=9) strains using the relative quantification method normalized to 16S rRNA. RESULTS: The mRNA expression levels of efflux genes Rv2688c (p=0.0037), Rv1634 (p=0.0042), drrA (p=0.0078) and drrB (p=0.0003) were upregulated in XDR-TB strains as compared with DS MTB strains. CONCLUSION: The differences between XDR-TB and drug-susceptible isolates suggest that the increased expression levels of MTB efflux pump genes may contribute to drug resistance in extensively drug-resistant tuberculosis. Future studies are needed to determine whether combining efflux pump inhibitors to antitubercular drugs would be effective to treat resistant tuberculosis.

12.
Int J Mycobacteriol ; 5 Suppl 1: S97-S98, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28043640

ABSTRACT

INTRODUCTION: Extensively drug-resistant tuberculosis (XDR-TB) has emerged as one of the biggest threats to public health and TB control programs worldwide. XDR-TB is caused by Mycobacterium tuberculosis (MTB) strains resistant to rifampin and isoniazid, as well as to a fluoroquinolone and to at least one injectable aminoglycoside. Drug resistance in MTB has primarily been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, it has also been shown that efflux pumps may play a role in resistance of MTB. Upregulation of drug efflux pumps can decrease the intracellular concentration of drugs and reduce their efficacy. METHODS: Whole genome sequencing was performed on 32 XDR-TB clinical isolates. Sequence data were used to investigate SNPs in efflux pump genes as compared with the H37Rv reference genome. RESULTS: Of the XDR MTB strains, eight (21.62%) were wild type for rpsL, rrs (500 region), and gidB genes, but had non-synonymous (ns) SNPs (aspartic acid to histidine) in the drrA efflux pump gene at position 3273138. Three of eight (37.5%) XDR MTB strains, wild type for rpsL, rrs (500 region), gidB, and gyrB genes were phenotypically streptomycin sensitive and five (62.5%) XDR MTB strains were streptomycin resistant, while all XDR MTB strains, wild type for rpsL, rrs, gidB, and gyrB genes were resistant to fluoroquinolone (ofloxacin) and ethambutol. In addition, three XDR MTB strains wild type for rpsL, rrs, gidB, and drrA genes showed nsSNPs (isoleucine to valine) in the major facilitator superfamily, Rv1634 efflux pump gene at position 1839306. CONCLUSION: Our data show an nsSNP in the drrA efflux pump gene that may result in upregulation of drug efflux mechanisms in MTB strains. It is therefore imperative to understand the mechanism of efflux and its role in drug resistance, which will enable the identification of new drug targets and development of new drug regimens to counteract the drug efflux mechanism of MTB.

SELECTION OF CITATIONS
SEARCH DETAIL
...