Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(21): 16149-16159, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34664505

ABSTRACT

The solid-state mechanochemical reactions under ambient conditions of CuSCN and Zn(SCN)2 resulted in two novel materials: partially Zn-substituted α-CuSCN and a new phase CuxZny(SCN)x+2y. The reactions take place at the labile S-terminal, and both products show melting and glass transition behaviors. The optical band gap and solid-state ionization potential can be adjusted systematically by adjusting the Cu/Zn ratio. Density functional theory calculations also reveal that the Zn-substituted CuSCN structure features a complementary electronic structure of Cu 3d states at the valence band maximum and Zn 4s states at the conduction band minimum. This work shows a new route to develop semiconductors based on coordination polymers, which are becoming technologically relevant for electronic and optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 12(21): 23812-23821, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32368887

ABSTRACT

The development of an effective approach for methane utilization, especially methane conversion to methanol, is a crucial challenge that has remained unsolved satisfactorily. Herein, we propose an alternative concept of methane utilization to methanol over Fe-ZSM-5@ZIF-8. The concept is to use the designed composite as a dual catalyst in which ZIF-8 and Fe-ZSM-5 act simultaneously as a gas adsorbent and catalyst, respectively. In this case, methane can be adsorbed on ZIF-8 at 50 °C and subsequently converted to methanol at a moderate temperature (150 °C) on Fe-ZSM-5. Interestingly, the promising catalytic performance is observed on Fe-ZSM-5@ZIF-8, whereas only trace amounts of produced methanol are detected on isolated Fe-ZSM-5 and ZIF-8. Moreover, the designed composite also facilitates a facile methanol desorption at the hydrophobic surface of the composite. This first example opens up new promising horizons in combined perspectives for gas storage and catalytic process applications.

3.
Nanoscale Adv ; 2(10): 4437-4449, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132936

ABSTRACT

A hierarchical zeolite composite, MOR@ZSM-5, with two distinct frameworks has been successfully fabricated via the repeated crystallization of ZSM-5 nanocrystals on mordenite surfaces. To avoid their phase separation, the surface of mordenite was pretreated with tetra(n-butyl)ammonium hydroxide (TBAOH) to induce the formation of the ZSM-5 nuclei, and it was subsequently modified by the continuous growth of nanocrystalline ZSM-5 on the entire area of the mordenite surfaces. Interestingly, the fully overgrown MOR@ZSM-5 composite exhibits a remarkable improvement in the ethylbenzene selectivity (>60%) obtained from the alkylation of benzene with ethanol with respect to isolated zeolites and their physical mixture due to the enhanced external surface area and hierarchical porosity as well as the reasonable acidity provided by the fully dispersed ZSM-5 nanocrystals on the mordenite surfaces. Moreover, coke species deposited on the designed composites are likely located at the external surfaces and do not considerably deteriorate the catalytic performance, whereas they are deposited predominantly in the micropores over the incompletely overgrown MOR@ZSM-5 composite. The present study illustrates the advantages of the overgrown zeolite composites of two incompatible frameworks in tailoring the hierarchical porosity, adjusting the acidic properties, and eventually controlling the product selectivity in acid-catalyzed reactions such as the alkylation of benzene with ethanol.

4.
ACS Omega ; 4(1): 1077-1085, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30729222

ABSTRACT

Cu-ZnO/Al-MCM-41 catalysts were studied for NO x reduction. The total metal loading was varied as 3, 5, and 7 wt %, whereas the Cu-to-ZnO ratio was fixed at 1:1. Too high metal loading led to lower reducibility of Cu2+, as CuO and ZnO covers on the catalyst surface could partially block pores and hinder gas molecules to access the Cu2+ ions. Subsequently, Cu loading was fixed at 2.5 wt %, whereas ZnO content was varied as 0, 2.5, and 3.5 wt %. The results demonstrated that 2.5Cu-2.5ZnO catalyst exhibits the best catalytic activity, as it gave the average NO conversion of 87%.

5.
RSC Adv ; 9(32): 18087-18097, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-35515215

ABSTRACT

Hierarchical ZSM-12 nanolayers have been successfully synthesized via a one-pot hydrothermal process using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (TPOAC) as a secondary organic structure-directing agent (OSDA). The as-synthesized ZSM-12 samples were characterized by means of XRD, SEM, TEM, N2 physisorption, and NH3-TPD. This clearly demonstrates that the TPOAC content and the crystallization time are crucial parameters for the formation of nanolayered structures. The presence of such a structure significantly improves the mesoporosity of ZSM-12 by generating interstitial mesopores between nanolayers, eventually resulting in enhancing external surface areas and mesopore volumes, and subsequently promoting the molecular diffusion inside a zeolite framework. To illustrate its advantages as a heterogeneous catalyst, hierarchical ZSM-12 nanolayers were applied in the catalytic application of an esterification of levulinic acid with ethanol to ethyl levulinate. Interestingly, hierarchical ZSM-12 nanolayers exhibit an improvement of catalytic activity in terms of levulinic acid conversion (78.5%) and ethyl levulinate selectivity (98.7%) compared with other frameworks of hierarchical zeolite nanosheets, such as ZSM-5 and FAU. The example reported herein demonstrates an efficient way to synthesize a unidimensional pore zeolite with hierarchical nanolayered structure via a dual template method and also opens up perspectives for the application of different hierarchical porous systems of zeolites in the bulky-molecule reactions such as in the case of levulinic acid esterification with ethanol.

6.
J Nanosci Nanotechnol ; 19(2): 743-757, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30360150

ABSTRACT

A Cu-Zn/core-shell Al-MCM-41 catalyst with various Cu and Zn species was investigated for selective catalytic reduction of NO with NH3. The roles of Zn in the NOx adsorption properties and the acidity of the catalysts were studied by temperature-programmed desorption of NOx and in situ Fourier transform infrared spectroscopy of NO+O2 adsorption and NH3 adsorption. The presence of Zn can promote the number of acid sites and improve the NOx adsorption capacity by providing the additional sites for NOx adsorption and subsequent nitrite and nitrate formation. Based on the experimental results, a possible reaction pathway was suggested. Cu-Zn/Al-MCM-41 exhibited higher activity compared with that of Cu/Al-MCM-41, having an average NO conversion of 73%. However, the average NO conversion was increased to 77% when Zn was loaded as ZnO form instead of various Zn species. in situ X-ray adsorption near edge structure during reduction by H2 revealed that there is a higher number of Cu+ in Cu-ZnO/Al-MCM-41 than that in Cu-Zn/Al-MCM-41. Under wet condition, the average NO conversion of Cu-ZnO/core-shell Al-MCM-41 was dropped to 68%. However, activity of Cu-ZnO/core-shell Al-MCM-41 was more stable than that of Cu-Zn/core-shell Al-MCM-41.

SELECTION OF CITATIONS
SEARCH DETAIL
...