Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36837023

ABSTRACT

Bone marrow is complex structure containing heterogenetic cells, making it difficult to regenerate using artificial scaffolds. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 µm pore diameters (300TCP and 500TCP) induced bone marrow structure within the pores. In this study, we examined the optimal scaffold structure for bone marrow with homeostatic bone metabolism using honeycomb TCP. 300TCP and 500TCP were transplanted into rat muscle, and bone marrow formation was histologically assessed. Immunohistochemistry for CD45, CD34, Runt-related transcription factor 2 (Runx2), c-kit single staining, Runx2/N-cadherin, and c-kit/Tie-2 double staining was performed. The area of bone marrow structure, which includes CD45(+) round-shaped hematopoietic cells and CD34(+) sinusoidal vessels, was larger in 300TCP than in 500TCP. Additionally, Runx2(+) osteoblasts and c-kit(+) hematopoietic stem cells were observed on the surface of bone tissue formed within TCP. Among Runx2(+) osteoblasts, spindle-shaped N-cadherin(+) cells existed in association with c-kit(+)Tie-2(+) hematopoietic stem cells on the bone tissue formed within TCP, which formed a hematopoietic stem cell niche similar to as in vivo. Therefore, honeycomb TCP with 300 µm pore diameters may be an artificial scaffold with an optimal geometric structure as a scaffold for bone marrow formation.

2.
Biomedicines ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36359248

ABSTRACT

Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.

3.
Oncol Lett ; 24(5): 382, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36238359

ABSTRACT

The cancer stroma regulates bone invasion in oral squamous cell carcinoma (OSCC). However, data on normal stroma are limited. In the present study, the effects of gingival and periodontal ligament tissue-derived stromal cells (G-SCs and P-SCs, respectively) and human dermal fibroblasts (HDFs) on bone resorption and osteoclast activation were assessed using hematoxylin and eosin and tartrate-resistant acid phosphatase staining in a cell line-derived xenograft model. The results demonstrated that G-SCs promoted bone invasion and osteoclast activation and inhibited osteoclast proliferation following crosstalk with the human OSCC HSC-3 cell line, whereas P-SCs inhibited bone resorption and promoted osteoclast proliferation in vitro but had a minimal effect on osteoclast activation both in vitro and in vivo following crosstalk with HSC-3 cells. Furthermore, the effects of G-SCs, P-SCs and HDFs on protein expression levels of matrix metalloproteinase (MMP)-9, membrane type 1 MMP (MT1-MMP), Snail, parathyroid hormone-related peptide (PTHrP) and receptor activator of NF-κB ligand (RANKL) in HSC-3 cells in OSCC bone invasion regions were assessed using immunohistochemistry. The results demonstrated that G-SCs had a more prominent effect on the expression of MMP-9, MT1-MMP, Snail, PTHrP, and RANKL, whereas P-SCs only promoted RANKL and PTHrP expression and exerted a minimal effect on MMP-9, MT1-MMP and Snail expression. The potential genes underlying the differential effects of G-SCs and P-SCs on bone invasion in OSCC were evaluated using a microarray, which indicated that cyclin-dependent kinase 1, insulin, aurora kinase A, cyclin B1 and DNA topoisomerase II alpha underlaid these differential effects. Therefore, these results demonstrated that G-SCs promoted bone invasion in OSCC by activating osteoclasts on the bone surface, whereas P-SCs exerted an inhibitory effect. These findings could indicate a potential regulatory mechanism for bone invasion in OSCC.

4.
Oncol Rep ; 47(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35211756

ABSTRACT

Stromal cells in the tumor microenvironment (TME) can regulate the progression of numerous types of cancer; however, the bone invasion of oral squamous cell carcinoma (OSCC) has been poorly investigated. In the present study, the effect of verrucous SCC­associated stromal cells (VSCC­SCs), SCC­associated stromal cells (SCC­SCs) and human dermal fibroblasts on bone resorption and the activation of HSC­3 osteoclasts in vivo were examined by hematoxylin and eosin, AE1/3 (pan­cytokeratin) and tartrate­resistant acid phosphatase staining. In addition, the expression levels of matrix metalloproteinase (MMP)9, membrane­type 1 MMP (MT1­MMP), Snail, receptor activator of NF­κB ligand (RANKL) and parathyroid hormone­related peptide (PTHrP) in the bone invasion regions of HSC­3 cells were examined by immunohistochemistry. The results suggested that both SCC­SCs and VSCC­SCs promoted bone resorption, the activation of osteoclasts, and the expression levels of MMP9, MT1­MMP, Snail, RANKL and PTHrP. However, SCC­SCs had a more prominent effect compared with VSCC­SCs. Finally, microarray data were used to predict potential genes underlying the differential effects of VSCC­SCs and SCC­SCs on bone invasion in OSCC. The results revealed that IL1B, ICAM1, FOS, CXCL12, INS and NGF may underlie these differential effects. In conclusion, both VSCC­SCs and SCC­SCs may promote bone invasion in OSCC by enhancing the expression levels of RANKL in cancer and stromal cells mediated by PTHrP; however, SCC­SCs had a more prominent effect. These findings may represent a potential regulatory mechanism underlying the bone invasion of OSCC.


Subject(s)
Bone Resorption , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Bone Resorption/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Head and Neck Neoplasms/pathology , Humans , Mouth Neoplasms/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment
5.
Materials (Basel) ; 14(12)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202970

ABSTRACT

In recent years, there has been increasing interest in the treatment of bone defects using undifferentiated mesenchymal stem cells (MSCs) in vivo. Recently, dental pulp has been proposed as a promising source of pluripotent mesenchymal stem cells (MSCs), which can be used in various clinical applications. Dentin is the hard tissue that makes up teeth, and has the same composition and strength as bone. However, unlike bone, dentin is usually not remodeled under physiological conditions. Here, we generated odontoblast-like cells from mouse dental pulp stem cells and combined them with honeycomb tricalcium phosphate (TCP) with a 300 µm hole to create bone-like tissue under the skin of mice. The bone-like hard tissue produced in this study was different from bone tissue, i.e., was not resorbed by osteoclasts and was less easily absorbed than the bone tissue. It has been suggested that hard tissue-forming cells induced from dental pulp do not have the ability to induce osteoclast differentiation. Therefore, the newly created bone-like hard tissue has high potential for absorption-resistant hard tissue repair and regeneration procedures.

6.
Materials (Basel) ; 13(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207665

ABSTRACT

Recently, dental pulp has been attracting attention as a promising source of multipotent mesenchymal stem cells (MSCs) for various clinical applications of regeneration fields. To date, we have succeeded in establishing rat dental pulp-derived cells showing the characteristics of odontoblasts under in vitro conditions. We named them Tooth matrix-forming, GFP rat-derived Cells (TGC). However, though TGC form massive dentin-like hard tissues under in vivo conditions, this does not lead to the induction of polar odontoblasts. Focusing on the importance of the geometrical structure of an artificial biomaterial to induce cell differentiation and hard tissue formation, we previously have succeeded in developing a new biomaterial, honeycomb tricalcium phosphate (TCP) scaffold with through-holes of various diameters. In this study, to induce polar odontoblasts, TGC were induced to form odontoblasts using honeycomb TCP that had various hole diameters (75, 300, and 500 µm) as a scaffold. The results showed that honeycomb TCP with 300-µm hole diameters (300TCP) differentiated TGC into polar odontoblasts that were DSP positive. Therefore, our study indicates that 300TCP is an appropriate artificial biomaterial for dentin regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...