Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4762, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553329

ABSTRACT

Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.


Subject(s)
Dependovirus , Parvovirinae , Animals , Dependovirus/metabolism , Transduction, Genetic , Genetic Vectors/genetics , Brain/diagnostic imaging , Brain/metabolism , Transgenes , Primates/genetics , Parvovirinae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Neurons/metabolism
2.
Sci Rep ; 13(1): 10908, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407668

ABSTRACT

Perception of facial expression is crucial for primate social interactions. This visual information is processed through the ventral cortical pathway and the subcortical pathway. However, the subcortical pathway exhibits inaccurate processing, and the responsible architectural and physiological properties remain unclear. To investigate this, we constructed and examined convolutional neural networks with three key properties of the subcortical pathway: a shallow layer architecture, concentric receptive fields at the initial processing stage, and a greater degree of spatial pooling. These neural networks achieved modest accuracy in classifying facial expressions. By replacing these properties, individually or in combination, with corresponding cortical features, performance gradually improved. Similar to amygdala neurons, some units in the final processing layer exhibited sensitivity to retina-based spatial frequencies (SFs), while others were sensitive to object-based SFs. Replacement of any of these properties affected the coordinates of the SF encoding. Therefore, all three properties limit the accuracy of facial expression information and are essential for determining the SF representation coordinate. These findings characterize the role of the subcortical computational processes in facial expression recognition.


Subject(s)
Facial Expression , Facial Recognition , Animals , Neural Networks, Computer , Amygdala/physiology , Primates
3.
Cereb Cortex ; 33(3): 895-915, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35323915

ABSTRACT

A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.


Subject(s)
Pulvinar , Visual Cortex , Animals , Superior Colliculi/physiology , Emotions , Pulvinar/physiology , Primates
4.
Front Psychol ; 13: 988302, 2022.
Article in English | MEDLINE | ID: mdl-36405116

ABSTRACT

Cultural similarities and differences in facial expressions have been a controversial issue in the field of facial communications. A key step in addressing the debate regarding the cultural dependency of emotional expression (and perception) is to characterize the visual features of specific facial expressions in individual cultures. Here we developed an image analysis framework for this purpose using convolutional neural networks (CNNs) that through training learned visual features critical for classification. We analyzed photographs of facial expressions derived from two databases, each developed in a different country (Sweden and Japan), in which corresponding emotion labels were available. While the CNNs reached high rates of correct results that were far above chance after training with each database, they showed many misclassifications when they analyzed faces from the database that was not used for training. These results suggest that facial features useful for classifying facial expressions differed between the databases. The selectivity of computational units in the CNNs to action units (AUs) of the face varied across the facial expressions. Importantly, the AU selectivity often differed drastically between the CNNs trained with the different databases. Similarity and dissimilarity of these tuning profiles partly explained the pattern of misclassifications, suggesting that the AUs are important for characterizing the facial features and differ between the two countries. The AU tuning profiles, especially those reduced by principal component analysis, are compact summaries useful for comparisons across different databases, and thus might advance our understanding of universality vs. specificity of facial expressions across cultures.

5.
Brain Struct Funct ; 227(4): 1385-1403, 2022 May.
Article in English | MEDLINE | ID: mdl-35286478

ABSTRACT

Natural scenes are characterized by diverse image statistics, including various parameters of the luminance histogram, outputs of Gabor-like filters, and pairwise correlations between the filter outputs of different positions, orientations, and scales (Portilla-Simoncelli statistics). Some of these statistics capture the response properties of visual neurons. However, it remains unclear to what extent such statistics can explain neural responses to natural scenes and how neurons that are tuned to these statistics are distributed across the cortex. Using two-photon calcium imaging and an encoding-model approach, we addressed these issues in macaque visual areas V1 and V4. For each imaged neuron, we constructed an encoding model to mimic its responses to naturalistic videos. By extracting Portilla-Simoncelli statistics through outputs of both filters and filter correlations, and by computing an optimally weighted sum of these outputs, the model successfully reproduced responses in a subpopulation of neurons. We evaluated the selectivities of these neurons by quantifying the contributions of each statistic to visual responses. Neurons whose responses were mainly determined by Gabor-like filter outputs (low-level statistics) were abundant at most imaging sites in V1. In V4, the relative contribution of higher order statistics, such as cross-scale correlation, was increased. Preferred image statistics varied markedly across V4 sites, and the response similarity of two neurons at individual imaging sites gradually declined with increasing cortical distance. The results indicate that natural scene analysis progresses from V1 to V4, and neurons sharing preferred image statistics are locally clustered in V4.


Subject(s)
Visual Cortex , Animals , Macaca mulatta , Neurons/physiology , Orientation/physiology , Photic Stimulation/methods , Visual Cortex/physiology , Visual Pathways/physiology
6.
Sci Rep ; 11(1): 3237, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547381

ABSTRACT

Schizophrenia affects various aspects of cognitive and behavioural functioning. Eye movement abnormalities are commonly observed in patients with schizophrenia (SZs). Here we examined whether such abnormalities reflect an anomaly in inhibition of return (IOR), the mechanism that inhibits orienting to previously fixated or attended locations. We analyzed spatiotemporal patterns of eye movement during free-viewing of visual images including natural scenes, geometrical patterns, and pseudorandom noise in SZs and healthy control participants (HCs). SZs made saccades to previously fixated locations more frequently than HCs. The time lapse from the preceding saccade was longer for return saccades than for forward saccades in both SZs and HCs, but the difference was smaller in SZs. SZs explored a smaller area than HCs. Generalized linear mixed-effect model analysis indicated that the frequent return saccades served to confine SZs' visual exploration to localized regions. The higher probability of return saccades in SZs was related to cognitive decline after disease onset but not to the dose of prescribed antipsychotics. We conclude that SZs exhibited attenuated IOR under free-viewing conditions, which led to restricted scene scanning. IOR attenuation will be a useful clue for detecting impairment in attention/orienting control and accompanying cognitive decline in schizophrenia.


Subject(s)
Cognitive Dysfunction/physiopathology , Eye Movements , Schizophrenia/physiopathology , Adult , Cognitive Dysfunction/etiology , Female , Humans , Male , Middle Aged , Saccades , Schizophrenia/complications , Visual Perception , Young Adult
7.
Brain Nerve ; 68(11): 1363-1370, 2016 Nov.
Article in Japanese | MEDLINE | ID: mdl-27852026

ABSTRACT

The ventral visual pathway projecting from the primary visual cortex to the visual temporal association cortex processes shape, color, and material properties of objects as well as face and facial expression, and stereoscopic depth. The last decade has witnessed great advances in our understanding of how information is transformed at each transition between the stages along this pathway. Accumulating evidence also indicates that neurons in the later part of the pathway (e.g., area V4 and inferior temporal cortex) are causally involved in generating perception of shape, color, face, and fine stereoscopic depth.


Subject(s)
Face , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Brain Mapping , Humans , Photic Stimulation
8.
J Neurophysiol ; 116(2): 784-95, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27193321

ABSTRACT

Neurons in the middle temporal (MT) visual area are thought to represent the velocity (direction and speed) of motion. Previous studies suggest the importance of both excitation and suppression for creating velocity representation in MT; however, details of the organization of excitation and suppression at the MT stage are not understood fully. In this article, we examine how excitatory and suppressive inputs are pooled in individual MT neurons by measuring their receptive fields in a three-dimensional (3-D) spatiotemporal frequency domain. We recorded the activity of single MT neurons from anesthetized macaque monkeys. To achieve both quality and resolution of the receptive field estimations, we applied a subspace reverse correlation technique in which a stimulus sequence of superimposed multiple drifting gratings was cross-correlated with the spiking activity of neurons. Excitatory responses tended to be organized in a manner representing a specific velocity independent of the spatial pattern of the stimuli. Conversely, suppressive responses tended to be distributed broadly over the 3-D frequency domain, supporting a hypothesis of response normalization. Despite the nonspecific distributed profile, the total summed strength of suppression was comparable to that of excitation in many MT neurons. Furthermore, suppressive responses reduced the bandwidth of velocity tuning, indicating that suppression improves the reliability of velocity representation. Our results suggest that both well-organized excitatory inputs and broad suppressive inputs contribute significantly to the invariant and reliable representation of velocity in MT.


Subject(s)
Brain Mapping , Models, Neurological , Neurons/physiology , Visual Cortex/cytology , Visual Perception/physiology , Animals , Macaca mulatta , Male , Photic Stimulation , Reproducibility of Results , Statistics, Nonparametric , Visual Pathways/physiology
9.
Sci Rep ; 5: 16712, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26567927

ABSTRACT

Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.


Subject(s)
Orientation/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Cats , Electrophysiological Phenomena , Eye Protective Devices , Optical Imaging , Photic Stimulation
10.
J Neurosci ; 31(28): 10371-9, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21753014

ABSTRACT

Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.


Subject(s)
Amygdala/physiology , Neurons/physiology , Temporal Lobe/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Brain Mapping , Electrophysiology , Face , Female , Macaca mulatta , Male , Pattern Recognition, Visual/physiology , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...