Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
ACS Appl Bio Mater ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963794

ABSTRACT

Postoperative peritoneal adhesion (PPA) is a prevalent complication of abdominal surgery, posing a significant hindrance to postsurgical recovery. Although several strategies have been developed to alleviate and prevent adhesions, their efficacy remains unsatisfactory. For the first time, we studied the therapeutic effect and mechanism of our recently developed thermally stable oligonucleotide-based mimetics of hepatocyte growth factor (HGF DNA aptamer) to prevent PPA. The HGF DNA aptamer effectively inhibited canonical TGF-ß1 signaling transduction, partially suppressing mesothelial mesenchymal transition. Additionally, the aptamer, respectively, upregulated and downregulated the expression of tissue plasminogen activator and plasminogen activator inhibitor 1, thereby enhancing fibrinolytic activity. As a pleiotropic factor, the HGF DNA aptamer also enhanced the migratory and proliferative capacities of mesothelial cells. Finally, the aptamer demonstrated a higher level of effectiveness in preventing PPAs than the commercially available antiperitoneal adhesion barrier, Seprafilm. Due to its therapeutic benefits, excellent stability, biosafety, cost-effectiveness, and versatility, the HGF DNA aptamer demonstrates promise for preventing PPA in future clinical settings.

2.
Biomater Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967234

ABSTRACT

Pancreatic islet transplantation is an effective treatment for type I diabetes mellitus. However, many problems associated with pancreatic islet engraftment remain unresolved. In this study, we developed a hydrogel microwell device for islet implantation, fabricated by crosslinking gelatin-methacryloyl (GelMA) and 2-hydroxyethyl methacrylate (HEMA) in appropriate proportions. The fabricated hydrogel microwell device could be freeze-dried and restored by immersion in the culture medium at any time, allowing long-term storage and transport of the device for ready-to-use applications. In addition, due to its non-swelling properties, the shape of the wells of the device was maintained. Thus, the device allowed pancreatic ß cell lines to form spheroids and increase insulin secretion. Intraperitoneal implantation of the ß cell line-seeded GelMA/HEMA hydrogel microwell device reduced blood glucose levels in diabetic mice. In addition, they were easy to handle during transplantation and were removed from the transplant site without peritoneal adhesions or infiltration by inflammatory cells. These results suggest that the GelMA/HEMA hydrogel microwell device can go from spheroid and/or organoid fabrication to transplantation in a single step.

3.
ACS Omega ; 9(19): 21127-21135, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764690

ABSTRACT

Red blood cell-inspired perfluorocarbon-encapsulated core-shell particles have been developed for biomedical applications. Although the use of perfluorodecalin (FDC) is expected for core-shell particles owing to its high oxygen solubility, the low solubility of FDC in any organic solvent, owing to its fluorous properties, prevents its use in core-shell particles. In this study, a new cosolvent system composed of dichloromethane (DCM) and heptafluoropropyl methyl ether (HFPME) was found to dissolve both FDC and fluorinated polyimide (FPI) based on a systematic study using a phase diagram, achieving a homogeneous disperse phase for emulsification composed of oxygen-permeable FPI and oxygen-soluble FDC. Using this novel cosolvent system and Shirasu porous glass (SPG) membrane emulsification, FDC-encapsulated FPI shell microparticles were successfully prepared for the first time. In addition to oxygenation, demonstrated using hypoxia-responsive HeLa cells, the fabricated core-shell microparticles exhibited monodispersity, excellent stability, biocompatibility, and oxygen capacity.

4.
ACS Biomater Sci Eng ; 10(5): 3343-3354, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38695560

ABSTRACT

Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.


Subject(s)
Hydrogels , Polyethylene Glycols , Sulfhydryl Compounds , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylene Glycols/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Swine , Cross-Linking Reagents/chemistry , Rheology , Humans , Acrylic Resins
5.
Hum Genome Var ; 11(1): 14, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38548731

ABSTRACT

TNNI3 is a gene that causes hypertrophic cardiomyopathy (HCM). A 14-year-old girl who was diagnosed with nonobstructive HCM presented with cardiopulmonary arrest due to ventricular fibrillation. Genetic testing revealed a novel de novo heterozygous missense variant in TNNI3, NM_000363.5:c.583A>T (p.Ile195Phe), which was determined to be the pathogenic variant. The patient exhibited progressive myocardial fibrosis, left ventricular remodeling, and life-threatening arrhythmias. Genetic testing within families is useful for risk stratification in pediatric HCM patients.

6.
Biomacromolecules ; 25(3): 1790-1799, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38306215

ABSTRACT

Injectable ECM-inspired hydrogels composed of hyaluronic acid and gelatin are biocompatible and potentially useful for various medical applications. We developed injectable hydrogels composed of monoaldehyde-modified hyaluronic acid (HA-mCHO) and carbohydrazide-modified gelatin (GL-CDH), "HA/GL gel", whose ratios of HA-mCHO to GL-CDH were different. The hydrogels exhibited gelation times shorter than 3 s. In addition, the hydrogels showed strong shear-thinning and self-healing properties, mainly because of the dynamic covalent bonding of Schiff bases between HA-mCHO and GL-CDH. This hydrogel degraded in the mice's peritoneum for a week and showed excellent biocompatibility. Moreover, the hydrogel showed a higher breaking strength than fibrin glue in the lap shear test of porcine skin. Finally, the hydrogels decreased bleeding to as low as fibrin glue without using thrombin and fibrinogen in a mouse liver bleeding model in both single- and double-barreled syringe administrations. HA/GL gels have the potential for excellent biocompatibility and hemostasis in clinical settings.


Subject(s)
Hemostatics , Mice , Animals , Swine , Hemostatics/pharmacology , Gelatin , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Fibrin Tissue Adhesive , Hemostasis
7.
Biomater Sci ; 12(6): 1454-1464, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38223981

ABSTRACT

In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10-3 s-1 to 6 × 101 mPa s at 103 s-1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm-2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.


Subject(s)
Tissue Adhesives , Animals , Swine , Hyaluronic Acid/chemistry , Diazomethane , Polyethyleneimine , Hydrogels/chemistry , Fibrin Tissue Adhesive
8.
Biomacromolecules ; 25(2): 1084-1095, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38289249

ABSTRACT

Benzaldehyde-conjugated chitosan (CH-CBA) was synthesized by a coupling reaction between chitosan (CH) and carboxybenzaldehyde (CBA). The pH-sensitive self-cross-linking can be achieved through the Schiff base reaction. The degree of substitution (DS) of CH-CBA was controlled at 1.4-12.7% by optimizing the pH and reagent stoichiometry. The dynamic Schiff base linkages conferred strong shear-thinning and self-healing properties to the hydrogels. The viscosity of the 2 wt/v % CH-CBA hydrogel decreased from 5.3 × 107 mPa·s at a shear rate of 10-2 s-1 to 2.0 × 103 mPa·s at 102 s-1 at pH 7.4. The CH-CBA hydrogel exhibited excellent biocompatibility in vitro and in vivo. Moreover, the hydrogel adhered strongly to porcine small intestine, colon, and cecum samples, comparable to commercial fibrin glue, and exhibited effective in vivo tissue sealing in a mouse cecal ligation and puncture model, highlighting its potential as a biomaterial for application in tissue adhesives, tissue engineering scaffolds, etc.


Subject(s)
Chitosan , Tissue Adhesives , Mice , Animals , Swine , Chitosan/chemistry , Tissue Adhesives/chemistry , Benzaldehydes , Hydrogels/chemistry , Schiff Bases/chemistry , Mice, Inbred CBA
9.
Langmuir ; 40(2): 1247-1256, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37988317

ABSTRACT

We fabricated drug-loaded, microsized, and torus-shaped alginate microparticles (TSMs) by vortex-ring freezing (VRF), utilizing vortex ring formation and ionic cross-linking. The equivalent outer diameter of the TSMs was ca. 200 µm. Several model drugs, such as doxorubicin, heparin, lysozyme, and several dextran derivatives, have been successfully loaded into TSMs. Because the TSMs were fragile due to the limitation of the process conditions of the VRF, drug-loaded TSMs were subsequently cross-linked via "post-cross-linking" with CaCl2, SrCl2, or BaCl2 to increase the cross-linking density of the alginate matrix, thereby enhancing the stability of dextran (Dex)-loaded TSMs (Dex-TSMs) and enabling the sustained release of natural Dex of 10, 70, or 150 kDa and cationic or anionic Dex at a physiological pH. The release kinetics of Dexs showed molecular weight and charge dependence; a relatively dense network of the alginate matrix of post-cross-linked TSMs resulted in the sustained release of Dexs with high molecular weights, heparin, and lysozyme for up to 7 days in the release test. Furthermore, the solute diffusivities of the dextran derivatives in the bulk alginate matrix were measured by using fluorescence correlation spectroscopy, which supported the release kinetics of TSMs. Drug-loaded TSMs have potential as drug carriers for biopharmaceuticals, such as proteins.


Subject(s)
Alginates , Muramidase , Delayed-Action Preparations/chemistry , Drug Liberation , Alginates/chemistry , Kinetics , Dextrans/chemistry , Drug Carriers/chemistry , Heparin
10.
FASEB J ; 38(1): e23328, 2024 01.
Article in English | MEDLINE | ID: mdl-38019192

ABSTRACT

Acetaminophen (APAP) is a double-edged sword, mainly depending on the dosage. A moderate dose of APAP is effective for fever and pain relief; however, an overdose induces acute liver injury. The mechanism underlying APAP-induced acute liver failure is unclear, and its treatment is limited. A recent report has shown that several oxidized phospholipids are associated with APAP-induced acute liver failure. Lysophosphatidylcholine acyltransferase 3 (Lpcat3, Lplat12), which is highly expressed in the liver, preferentially catalyzes the incorporation of arachidonate into lysophospholipids (PLs). In the present study, we investigated the roles of Lpcat3 on APAP-induced acute liver injury using liver-specific Lpcat3-knockout mice. Hepatic Lpcat3 deficiency reduced the degree of APAP-induced necrosis of hepatocytes around Zone 3 and ameliorated the elevation of hepatic injury serum marker levels, and prolonged survival. Lipidomic analysis showed that the accumulation of oxidized and hydroperoxidized phospholipids was suppressed in Lpcat3-knockout mice. The amelioration of APAP-induced acute liver injury was due not only to the reduction in the lipid synthesis of arachidonic acid PLs because of Lpcat3 deficiency, but also to the promotion of the APAP detoxification pathway by facilitating the conjugation of glutathione and N-acetyl-p-benzoquinone imine. Our findings suggest that Lpcat3 is a potential therapeutic target for treating APAP-induced acute liver injury.


Subject(s)
Acetaminophen , Liver Failure, Acute , Animals , Mice , Acetaminophen/toxicity , Hepatocytes , Mice, Knockout , 1-Acylglycerophosphocholine O-Acyltransferase
11.
Biomater Sci ; 11(20): 6781-6789, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37614197

ABSTRACT

Endoscopic submucosal dissection (ESD) for the treatment of esophageal mucosal lesions often leads to postoperative stenosis, causing difficulty in swallowing, known as dysphagia. In this study, we developed an in situ cross-linkable powder composed of alginate, gelatin, transglutaminase (TG), and calcium chloride ions (Ca2+), which can be administered through a 1.5 m-long and 3.2 mm-diameter endoscopic instrument channel. The powdered mixture of alginate and gelatin quickly formed a hydrogel by absorbing body fluids and was cross-linked by TG and Ca2+, which adhered ex vivo to porcine submucosal layers for over 2 weeks. In addition, we developed a new submucosal exfoliation model in rats that induced severe stenosis, similar to the ESD-induced stenosis models in clinical practice. When administered to the new rat model, the powder system effectively reduced the severity of esophageal stenosis based on body weight change monitoring, anatomical findings, and histological analysis. The body weight of the rats was maintained at the initial weight on postoperative day 14 (POD14), and epithelialization on POD7 and 14 improved to almost 100%. Additionally, collagen accumulation and the number of α-SMA-positive cells decreased due to powder administration. Therefore, these findings indicate that the in situ cross-linkable powder can prevent esophageal stenosis after ESD.


Subject(s)
Esophageal Stenosis , Rats , Animals , Swine , Esophageal Stenosis/prevention & control , Esophageal Stenosis/etiology , Gelatin , Powders , Constriction, Pathologic , Body Weight
12.
Sci Technol Adv Mater ; 24(1): 2223050, 2023.
Article in English | MEDLINE | ID: mdl-37363800

ABSTRACT

Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.

13.
Sci Technol Adv Mater ; 24(1): 2175586, 2023.
Article in English | MEDLINE | ID: mdl-36896456

ABSTRACT

We developed a new muco-adhesive hydrogel composed of cationic guar gum (CGG) and boric acid (BA). The CGG-BA precursor solution of 0.5-2% w/v concentration exhibited fluidity at low pH (3-5), while gelation occurred within 1 min at physiological pH (7-8) conditions. Scanning electron microscopy and Fourier-transform infrared spectroscopy results confirmed the change in physical and chemical behavior, respectively, with change in pH. The pH-responsive self-healing ability was analyzed through microscopy and rheology. CGG-BA hydrogels showed good self-healing property at pH 7.4. The in vitro biocompatibility test of the hydrogel studied using NIH3T3 and NHEK cells showed that it was non-toxic at concentrations of CGG-BA below 2% w/v. Ex vivo mucoadhesive tests confirmed the hydrogel's potential for use as a muco-adhesive. Burst pressure tests were conducted using pig esophageal mucosa and the results showed that at pH 7.4, 1% w/v CGG-BA self-healable hydrogel resisted about 8 ± 2 kPa pressure, comparable to that of Fibrin glue. This was higher than that at solution (pH 5) and brittle gel (pH 10) conditions. To confirm the good adhesive strength of the self-healable hydrogels, lap shear tests conducted, resulted in adhesive strengths measured in the range of 1.0 ± 0.5-2.0 ± 0.6 kPa, which was also comparable to fibrin glue control 1.8 ± 0.6 kPa. Hydrogel weight measurements showed that 40-80% gel lasted under physiological conditions for 10 h. The results suggest that CGG-BA hydrogel has potential as a pH responsive mucosal protectant biomaterial.

14.
ACS Omega ; 8(1): 1343-1352, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643500

ABSTRACT

Stimuli-responsive star polymers are promising functional materials whose aggregation, adhesion, and interaction with cells can be altered by applying suitable stimuli. Among several stimuli assessed, the potassium ion (K+), which is known to be captured by crown ethers, is of considerable interest because of the role it plays in the body. In this study, a K+-responsive star copolymer was developed using a polyglycerol (PG) core and grafted copolymer arms consisting of a thermo-responsive poly(N-isopropylacrylamide) unit, a metal ion-recognizing benzo-18-crown-6-acrylamide unit, and a photoluminescent fluorescein O-methacrylate unit. Via optimization of grafting density and copolymerization ratio of grafted arms, along with the use of hydrophilic hyperbranched core, microsized aggregates with a diameter of 5.5 µm were successfully formed in the absence of K+ ions without inducing severe sedimentation (the lower critical solution temperature (LCST) was 35.6 °C). In the presence of K+ ions, these aggregates dispersed due to the shift in LCST (47.2 °C at 160 mM K+), which further induced the activation of fluorescence that was quenched in the aggregated state. Furthermore, macrophage targeting based on the micron-sized aggregation state and subsequent fluorescence activation of the developed star copolymers in response to an increase in intracellular K+ concentration were performed as a potential K+ probe or K+-responsive drug delivery vehicle.

15.
Mol Genet Metab Rep ; 32: 100899, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36046392

ABSTRACT

Background: Fabry disease is a rare, progressive genetic lysosomal disorder that can cause multisystem organ dysfunction. With increasing treatment options for Fabry disease, it is imperative that patients discuss and select treatment plans in conjunction with their physicians. Although shared decision making (SDM) should be recommended for clinical decision making in disease management, evidence is limited as to how patients in Japan are involved in the choice of their Fabry disease treatment and if other gaps exist with physicians in the perception of Fabry disease management. Objective: The main objective of the study was to assess the degree of agreement between patients and treating physicians in the SDM process as assessed by the SDM-Q-9 and SDM-Q-Doc questionnaires. In parallel, this study also investigated other factors that might impact the SDM process. Methods: This was a cross-sectional web-based questionnaire survey of Japanese patients with Fabry disease and their treating physicians conducted from February 2021 to June 2021. Online surveys were developed for patients and physicians, consisting of seven items, including the Japanese version of the 9-item SDM Questionnaire for patients (SDM-Q-9) and physicians (SDM-Q-Doc). Physicians were divided into two cohorts: non-paired and paired with patients. Only the paired cohort physicians answered the SDM questionnaire. Results: A total of 99 physicians and 30 patients answered the respective questionnaires. Among these, 13 physicians were included in a paired SDM analysis with patients. Mean (standard deviation [SD]) patient age at diagnosis of Fabry disease was 47.5 (15.8) years, and 14 (46.7%) were male. Both physicians in the paired cohort and patients considered patient-reported outcomes (both 76.7%) and the findings from laboratory testing as important (90.0% and 60.0% respectively). However, regarding symptoms that affect quality of life of patients, perception gaps were identified in that physicians in the paired cohort placed less importance on patient-reported outcome-related symptoms such as sweating abnormalities and gastrointestinal symptoms than their patients (0% [0/17] and 44.4% [8/18], 11.8% [2/17] and 38.9% [7/18], respectively). In the paired analysis, there was no significant difference in total SDM score between patients and physicians (p = 0.82). However, the largest discordance in perception between patients and physicians was identified for the explanation of the advantages and disadvantages of the treatment options (weighted Kappa coefficient = 0.14). Conclusion: This survey revealed a gap in the perception of disease burden affecting patients' quality of life, and a recognition gap between physicians and patients when they discussed the advantages and disadvantages of treatment options. To improve the SDM process in Fabry disease management and treatment, practical solutions for bridging these gaps should be considered.

16.
Hum Genome Var ; 9(1): 6, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35181673

ABSTRACT

RBM20 is a disease-causing gene associated with dilated cardiomyopathy (DCM). The proband presented with the dilated phase of hypertrophic cardiomyopathy (HCM), and the mother also suffered from HCM. A missense variant of RBM20, p.Arg636His, previously reported as pathogenic in several families with DCM, was found in both the proband and the mother. Therefore, RBM20 p.Arg636His could be the causative variant for this familial HCM, and RBM20 might be a novel causative gene for HCM.

17.
Glob Pediatr Health ; 8: 2333794X211044114, 2021.
Article in English | MEDLINE | ID: mdl-34527765

ABSTRACT

We investigated 22 cases of patients with myocarditis during respiratory syncytial virus (RSV) infection by a questionnaire survey, and performed a literature search to clarify their characteristics. The age distribution was divided into 2 groups, that is, 1 group comprised of patients younger than 4-years old and the other comprised patients older than 15 years. ECG demonstrated disturbance of the conduction system (AV block) in 7 out of 18 patients (38.8%), myocardial damage (ST-T change) in 9 out of 18 patients (50.0%), and tachycardia in 3 out of 18 patients (16.6%). Echocardiography displayed a robust decrease in left-heart function in 12 out of 14 patients. The outcome was 2 deaths, 1 pacemaker placement, 4 patients with mild sequel. Our data suggest that RSV myocarditis caused by RSV infection can be divided into 3 different pathophysiologies, characterized by disturbance of the conduction system, myocardial damage, and increase of autonomy.

18.
Pediatr Rep ; 13(2): 241-244, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34068458

ABSTRACT

We report a Japanese 5-year-old boy with primary ciliary dyskinesia (PCD) which was diagnosed owing to Clostridium difficile (CD) infection caused by prolonged antibiotic exposure. He had intractable otitis media with effusion (OME) and had abdominal pain and diarrhea for 4 months after starting antibiotics administration. His stool contained CD toxin. After vancomycin treatment, his symptoms improved and his stools did not contain CD toxin. His past medical history included frequent pneumonia. We, therefore, performed electron microscopy of the biopsy specimen from his nasal mucosa and genetic testing, and he was diagnosed with PCD. PCD is a rare inherited genetic disease causing ciliary dysfunction, which is very difficult to diagnose because some children without PCD also develop the same symptoms. Therefore, children who have intractable OME, rhinosinusitis, frequent pneumonia, or bronchitis and are taking antibiotics for long periods of time should be checked for underlying diseases, such as PCD.

19.
Int Heart J ; 62(2): 359-366, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33678800

ABSTRACT

Dilated cardiomyopathy (DCM) is a common cause of heart failure. TTN, which encodes titin protein, is a representative causative gene of DCM, and is presented mainly as a truncation variant. However, TTN truncation variants are also found in healthy individuals, and it is therefore important to evaluate the pathogenicity of each variant. In this study, we analyzed 67 cardiomyopathy-associated genes in a male Japanese patient who was hospitalized for recurrent severe heart failure and identified a novel truncation variant, TTN Ser17456Arg fs*14. This TTN truncation variant was located in the A-band region. Moreover, the patient's mother with heart failure harbored the same variant, whereas the father and brother without heart failure did not harbor the variant. To examine the functional changes associated with the truncation variant, H9c2 cells were subjected to genome editing to generate cells with a homologous truncation variant. The cells were differentiated using all-trans-retinoic acid, and the mRNA expression of skeletal actin and cardiac actin were found to be increased and decreased, respectively, consistent with known changes in patients with DCM or heart failure. In contrast, another cell with the titin truncation variant used as a control showed no changes in heart failure-related genes. In summary, we found a novel TTN truncation variant in familial DCM patients and confirmed its functional changes using a relatively simple cell model. The novel truncation variant was identified as a pathogenic and disease-causing mutation.


Subject(s)
Cardiomyopathy, Dilated/genetics , Connectin/genetics , DNA/genetics , Mutation , Myocytes, Cardiac/metabolism , Ventricular Function, Left/physiology , Biopsy , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Connectin/metabolism , DNA/metabolism , DNA Mutational Analysis , Female , Humans , Japan , Male , Middle Aged , Myocytes, Cardiac/pathology , Pedigree
20.
Front Physiol ; 12: 698166, 2021.
Article in English | MEDLINE | ID: mdl-35095541

ABSTRACT

In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate's muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.

SELECTION OF CITATIONS
SEARCH DETAIL
...