Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 52(1): 55-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38528719

ABSTRACT

Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.


Subject(s)
Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Iron Overload , Liver , Thioacetamide , Animals , Thioacetamide/toxicity , Rats , Carbon Tetrachloride/toxicity , Male , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , DNA Damage/drug effects , Rats, Sprague-Dawley , Iron/toxicity
2.
J Toxicol Sci ; 49(4): 175-191, 2024.
Article in English | MEDLINE | ID: mdl-38556354

ABSTRACT

The Hippo pathway plays an important role in the growth, development, and regeneration of cells and organs. Transcriptional enhanced associate domain (TEAD), a transcription activator of the Hippo pathway, forms the complex with a transcriptional coactivator yes-associated protein (YAP) or a transcriptional coactivator PDZ-binding motif (TAZ). Their excessive activations are involved in carcinogenesis such as malignant pleural mesothelioma (MPM), and thus inhibition of the TEAD complex is expected to have potent anticancer activity against MPM. On the other hand, YAP or TAZ conditional knockout mice have been reported to show abnormal findings in various tissues, including the kidney, liver, and lung. In the present study, we evaluated the systemic toxicity of K-975, a novel TEAD inhibitor, in rats. When K-975 was administered orally to rats for 1 week, proteinuria suggestive of nephrotoxicity was observed. Electron microscopy revealed that K-975 at 300 mg/kg induced glomerular podocyte foot process effacement. After a 2-week recovery period, proteinuria with foot process effacement was recovered completely. Urinalysis and urinary biomarker evaluation suggested that the urinary albumin index (urinary albumin/urinary creatinine) was the most sensitive marker for detecting K-975-induced nephrotoxicity. After 3 cycles of 1-week administration followed by 2-week recovery periods, nephrotoxicity was reversible; however, incomplete reversibility was observed in rats with severe proteinuria. In conclusion, this study revealed that in rats, oral K-975 treatment induced severe proteinuria by podocyte foot process effacement, which was reversible and monitorable by the urinary albumin index, suggesting important information for developing K-975 as an anticancer drug.


Subject(s)
Antineoplastic Agents , Transcription Factors , Mice , Rats , Animals , Transcription Factors/metabolism , Antineoplastic Agents/toxicity , Proteinuria , Albumins
3.
J Toxicol Pathol ; 34(1): 33-41, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33627943

ABSTRACT

Iron overload has been well recognized to cause oxidant-mediated cellular/tissue injury; however, little is known about the effects of iron overload on the blood coagulation system. We encountered an unexpected bleeding tendency in rats fed a high-iron diet in a set of studies using iron-modified diets. In this study, we investigated the mechanism of hemorrhagic diathesis induced by dietary iron overload in rats. Six-week-old F344/DuCrlCrlj male rats were fed a standard (containing 0.02% iron) or a high-iron diet (containing 1% iron) for 6 weeks and were then sampled for hematological, blood biochemical, coagulation, and pathological examinations. Serum and liver iron levels increased in rats fed the high-iron diet (Fe group) and serum transferrin was almost saturated with iron. However, serum transaminase levels did not increase. Moreover, plasma prothrombin time and activated partial thromboplastin time were significantly prolonged, regardless of the presence of hemorrhage. The activity of clotting factors II and VII (vitamin K-dependent coagulation factors) decreased significantly, whereas that of factor VIII was unaltered. Blood platelet levels were not influenced by dietary iron overload, suggesting that the bleeding tendency in iron-overloaded rats is caused by secondary hemostasis impairment. In addition, hemorrhage was observed in multiple organs in rats fed diets containing more than 0.8% iron. Our results suggest that iron overload can increase the susceptibility of coagulation abnormalities caused by latent vitamin K insufficiency.

4.
Nutrients ; 12(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932999

ABSTRACT

Hepatic iron overload is well known as an important risk factor for progression of liver diseases; however, it is unknown whether it can alter the susceptibility to drug-induced hepatotoxicity. Here we investigate the pathological roles of iron overload in two single-dose models of chemically-induced liver injury. Rats were fed a high-iron (Fe) or standard diet (Cont) for four weeks and were then administered with allyl alcohol (AA) or carbon tetrachloride (CCl4). Twenty-four hours after administration mild mononuclear cell infiltration was seen in the periportal/portal area (Zone 1) in Cont-AA group, whereas extensive hepatocellular necrosis was seen in Fe-AA group. Centrilobular (Zone 3) hepatocellular necrosis was prominent in Cont-CCl4 group, which was attenuated in Fe-CCl4 group. Hepatic lipid peroxidation and hepatocellular DNA damage increased in Fe-AA group compared with Cont-AA group. Hepatic caspase-3 cleavage increased in Cont-CCl4 group, which was suppressed in Fe-CCl4 group. Our results showed that dietary iron overload exacerbates AA-induced Zone-1 liver injury via enhanced oxidative stress while it attenuates CCl4-induced Zone-3 liver injury, partly via the suppression of apoptosis pathway. This study suggested that susceptibility to drugs or chemical compounds can be differentially altered in iron-overloaded livers.


Subject(s)
Chemical and Drug Induced Liver Injury/complications , Chemical and Drug Induced Liver Injury/physiopathology , Diet/adverse effects , Iron Overload/complications , Iron Overload/physiopathology , Animals , Disease Models, Animal , Lipid Peroxidation/physiology , Male , Oxidative Stress/physiology , Rats , Rats, Inbred F344
5.
Nutrients ; 10(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279328

ABSTRACT

Chronic liver disease is an intractable disease, which can progress to cirrhosis and hepatocellular carcinoma. Hepatic iron overload is considered to be involved in the progression of chronic liver diseases; however, the mechanism remains to be elucidated. Here we investigate the role of dietary iron overload using chemically-induced liver cirrhosis model. Rats were fed a high-iron or standard diet and were injected intraperitoneally with thioacetamide (TAA) or saline twice a week for 20 weeks. Rats with TAA treatment (TAA group) had progressive liver cirrhosis characterized by persistent hepatocellular injury, mononuclear cell inflammation and bridging fibrosis; these lesions were markedly reduced in rats with iron feeding and TAA treatment (Fe-TAA group). Rats with iron feeding alone (Fe group) had no evidence of liver injury. Hepatic expression of cleaved caspase-3, but not phospho-RIP3, was decreased in Fe-TAA group compared with that in TAA group. The number of TUNEL-positive (terminal deoxynucleotidyl transferase dUTP nick end labeling) apoptotic hepatocytes was lower in the Fe-TAA group than in the TAA group. Hepatic xenobiotic metabolism and lipid peroxidation were shown to be less related to the abrogation of liver cirrhosis. Our results suggested that dietary hepatic iron overload abrogates chemically-induced liver cirrhosis in rats, which could partly involve decreased hepatocellular apoptosis.


Subject(s)
Diet/adverse effects , Iron Overload/etiology , Iron, Dietary/adverse effects , Liver Cirrhosis, Experimental/chemically induced , Thioacetamide/adverse effects , Animals , Hepatocytes/metabolism , Liver/metabolism , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...