Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 113975, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507411

ABSTRACT

The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.


Subject(s)
Cell Proliferation , Intestinal Neoplasms , Intestines , Sirtuins , Animals , Humans , Mice , Glutamine/metabolism , Homeostasis , Intestinal Mucosa/metabolism , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Intestinal Neoplasms/genetics , Intestines/metabolism , Intestines/pathology , Mice, Inbred C57BL , Mitochondrial Proteins , Nucleotides/metabolism , Organoids/metabolism , Sirtuins/metabolism
2.
PLoS One ; 17(8): e0273080, 2022.
Article in English | MEDLINE | ID: mdl-35976971

ABSTRACT

Ulcerative colitis (UC) is a complex, multifactorial disease driven by a dysregulated immune response against host commensal microbes. Despite rapid advances in our understanding of host genomics and transcriptomics, the metabolic changes in UC remain poorly understood. We thus sought to investigate distinguishing metabolic features of the UC colon (14 controls and 19 patients). Metabolomics analyses revealed inflammation state as the primary driver of metabolic variation rather than diagnosis, with multiple metabolites differentially regulated between inflamed and uninflamed tissues. Specifically, inflamed tissues were characterized by reduced levels of nicotinamide adenine dinucleotide (NAD+) and enhanced levels of nicotinamide (NAM) and adenosine diphosphate ribose (ADPr). The NAD+/NAM ratio, which was reduced in inflamed patients, served as an effective classifier for inflammation in UC. Mitochondria were also structurally altered in UC, with UC patient colonocytes displaying reduced mitochondrial density and number. Together, these findings suggest a link between mitochondrial dysfunction, inflammation, and NAD+ metabolism in UC.


Subject(s)
Colitis, Ulcerative , Colitis, Ulcerative/metabolism , Humans , Inflammation , Mitochondria/metabolism , NAD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...