Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079947

ABSTRACT

The present work analyzes the effect of process variables and the method of characterization of cellulose micro/nanofibers (CMNFs) obtained by different treatments. A chemical pre-treatment was performed using oxalic acid at 25 wt.% and 50 wt.%. Moreover, for mechanical pre-treatments, a rotary homogenizer or a PFI mill refiner were considered. For the mechanical fibrillation to obtain CMNFs, 5 and 15 passes through a pressurized homogenization were considered. The best results of nanofibrillation yield (76.5%), transmittance (72.1%) and surface charges (71.0 µeq/g CMNF) were obtained using the PFI mill refiner, 50 wt.% oxalic acid and 15 passes. Nevertheless, the highest aspect ratio (length/diameter) determined by Transmission Electron Microscopy (TEM) was found using the PFI mill refiner and 25 wt.% oxalic acid treatment. The aspect ratio was related to the gel point and intrinsic viscosity of CMNF suspensions. The values estimated for gel point agree with those determined by TEM. Moreover, a strong relationship between the intrinsic viscosity [η] of the CMNF dispersions and the corresponding aspect ratio (p) was found (ρ[η] = 0.014 p2.3, R2 = 0.99). Finally, the tensile strength of films obtained from CMNF suspensions was more influenced by the nanofibrillation yield than their aspect ratio.

2.
Bioresour Technol ; 100(7): 2254-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19095440

ABSTRACT

The removal of native acetyl groups from hardwood O-acetyl-glucuronoxylan has a strong effect on physical characteristics, accessibility and structure of this polymer. The removal also has effects on the swelling and ion transport capacity of the cell wall of hardwoods. In this work, a kinetic expression for Eucalyptus wood deacetylation is determined. Two liquid mediums are considered: a simple alkaline one and another with a higher sodium concentration. The kinetic expression is a power law for the acetyl content and the concentrations in the liquid medium dependence, and is an Arrhenius type expression for temperature dependence. The kinetic expression can be useful to predict the physical properties of wood since the analysis of deacetylation effects on effective capillarity (ECCSA) shows that the acetyl content is a determining factor of wood ionic transport capacity.


Subject(s)
Eucalyptus/metabolism , Wood/metabolism , Acetylation/drug effects , Alkalies/pharmacology , Capillary Action/drug effects , Diffusion/drug effects , Eucalyptus/drug effects , Hydrogen-Ion Concentration/drug effects , Kinetics , Osmolar Concentration , Temperature , Wood/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...