Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498865

ABSTRACT

Membrane proteins play important roles in biological functions, with accompanying allosteric structure changes. Understanding intramolecular dynamics helps elucidate catalytic mechanisms and develop new drugs. In contrast to the various technologies for structural analysis, methods for analyzing intramolecular dynamics are limited. Single-molecule measurements using optical microscopy have been widely used for kinetic analysis. Recently, improvements in detectors and image analysis technology have made it possible to use single-molecule determination methods using X-rays and electron beams, such as diffracted X-ray tracking (DXT), X-ray free electron laser (XFEL) imaging, and cryo-electron microscopy (cryo-EM). High-speed atomic force microscopy (HS-AFM) is a scanning probe microscope that can capture the structural dynamics of biomolecules in real time at the single-molecule level. Time-resolved techniques also facilitate an understanding of real-time intramolecular processes during chemical reactions. In this review, recent advances in membrane protein dynamics visualization techniques were presented.


Subject(s)
Membrane Proteins , Nanotechnology , Cryoelectron Microscopy , Kinetics , Microscopy, Atomic Force/methods
2.
Biochem Biophys Rep ; 31: 101298, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35794960

ABSTRACT

Acceleration of societal ageing has increased the global incidence of geriatric diseases such as Alzheimer's disease (AD), and the demands for proper diagnosis and monitoring of those diseases are also increasing daily. We utilized diffracted X-ray blinking (DXB) for amyloid ß (Aß) isoforms, which are thought to be closely related to AD, to discriminate among the dynamics of individual particles in early and long-term oligomerisation and aggregation inhibiting environments. Among the various Aß isoforms, the dynamics of Aß (1-42), which is known to be the most toxic form, were the slowest (the dynamics were lower by 78% com-pared with short-term incubation), and the dynamics were restored (the dynamics increased by 105% compared with normal aggregation) in an environment that suppressed oligomerisation of Aß (1-42). It has been confirmed that the use of DXB allows measurements of dynamics related to the functional states of the target molecules.

3.
Struct Dyn ; 8(4): 044302, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34258327

ABSTRACT

In recent years, real-time observations of molecules have been required to understand their behavior and function. To date, we have reported two different time-resolved observation methods: diffracted x-ray tracking and diffracted x-ray blinking (DXB). The former monitors the motion of diffracted spots derived from nanocrystals labeled onto target molecules, and the latter measures the fluctuation of the diffraction intensity that is highly correlated with the target molecular motion. However, these reports use a synchrotron x-ray source because of its high average flux, resulting in a high time resolution. Here, we used a laboratory x-ray source and DXB to measure the internal molecular dynamics of three different systems. The samples studied were bovine serum albumin (BSA) pinned onto a substrate, antifreeze protein (AFP) crystallized as a single crystal, and poly{2-(perfluorooctyl)ethyl acrylate} (PC8FA) polymer between polyimide sheets. It was found that not only BSA but also AFP and PC8FA molecules move in the systems. In addition, the molecular motion of AFP molecules was observed to increase with decreasing temperature. The rotational diffusion coefficients (DR) of BSA, AFP, and PC8FA were estimated to be 0.73 pm2/s, 0.65 pm2/s, and 3.29 pm2/s, respectively. Surprisingly, the DR of the PC8FA polymer was found to be the highest among the three samples. This is the first report that measures the molecular motion of a single protein crystal and polymer by using DXB with a laboratory x-ray source. This technique can be applied to any kind of crystal and crystalline polymer and provides atomic-order molecular information.

SELECTION OF CITATIONS
SEARCH DETAIL
...