Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 136: 314-326, 2021 12.
Article in English | MEDLINE | ID: mdl-34563724

ABSTRACT

Biomechanical changes to the collagen fibrillar architecture in articular cartilage are believed to play a crucial role in enabling normal joint function. However, experimentally there is little quantitative knowledge about the structural response of the Type II collagen fibrils in cartilage to cyclic loading in situ, and the mechanisms that drive the ability of cartilage to withstand long-term repetitive loading. Here we utilize synchrotron small-angle X-ray scattering (SAXS) combined with in-situ cyclic loading of bovine articular cartilage explants to measure the fibrillar response in deep zone articular cartilage, in terms of orientation, fibrillar strain and inter-fibrillar variability in healthy cartilage and cartilage degraded by exposure to the pro-inflammatory cytokine IL-1ß. We demonstrate that under repeated cyclic loading the fibrils reversibly change the width of the fibrillar orientation distribution whilst maintaining a largely consistent average direction of orientation. Specifically, the effect on the fibrillar network is a 3-dimensional conical orientation broadening around the normal to the joint surface, inferred by 3D reconstruction of X-ray scattering peak intensity distributions from the 2D pattern. Further, at the intrafibrillar level, this effect is coupled with reversible reduction in fibrillar pre-strain under compression, alongside increase in the variability of fibrillar pre-strain. In IL-1ß degraded cartilage, the collagen rearrangement under cyclic loading is disrupted and associated with reduced tissue stiffness. These finding have implications as to how changes in local collagen nanomechanics might drive disease progression or vice versa in conditions such as osteoarthritis and provides a pathway to a mechanistic understanding of such diseases. STATEMENT OF SIGNIFICANCE: Structural deterioration in biomechanically loaded musculoskeletal organs, e.g., joint osteoarthritis and back pain, are linked to breakdown and changes in their collagen-rich cartilaginous tissue matrix. A critical component enabling cartilage biomechanics is the ultrastructural collagen fibrillar network in cartilage. However, experimental probes of the dynamic structural response of cartilage collagen to biomechanical loads are limited. Here, we use X-ray scattering during cyclic loading (as during walking) on joint tissue to show that cartilage fibrils resist loading by a reversible, three-dimensional orientation broadening and disordering mechanism at the molecular level, and that inflammation reduces this functionality. Our results will help understand how changes to small-scale tissue mechanisms are linked to ageing and osteoarthritic progression, and development of biomaterials for joint replacements.


Subject(s)
Cartilage, Articular , Extracellular Matrix , Animals , Biomechanical Phenomena , Cattle , Collagen , Scattering, Small Angle , X-Ray Diffraction
2.
Acta Biomater ; 97: 437-450, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31374336

ABSTRACT

Structural and associated biomechanical gradients within biological tissues are important for tissue functionality and preventing damaging interfacial stress concentrations. Articular cartilage possesses an inhomogeneous structure throughout its thickness, driving the associated variation in the biomechanical strain profile within the tissue under physiological compressive loading. However, little is known experimentally about the nanostructural mechanical role of the collagen fibrils and how this varies with depth. Utilising a high-brilliance synchrotron X-ray source, we have measured the depth-wise nanostructural parameters of the collagen network in terms of the periodic fibrillar banding (D-period) and associated parameters. We show that there is a depth dependent variation in D-period reflecting the pre-strain and concurrent with changes in the level of intrafibrillar order. Further, prolonged static compression leads to fibrillar changes mirroring those caused by removal of extrafibrillar proteoglycans (as may occur in aging or disease). We suggest that fibrillar D-period is a sensitive indicator of localised changes to the mechanical environment at the nanoscale in soft connective tissues. STATEMENT OF SIGNIFICANCE: Collagen plays a significant role in both the structural and mechanical integrity of articular cartilage, allowing the tissue to withstand highly repetitive loading. However, the fibrillar mechanics of the collagen network in cartilage are not clear. Here we find that cartilage has a spatial gradient in the nanostructural collagen fibril pre-strain, with an increase in the fibrillar pre-strain with depth. Further, the fibrillar gradient changes similarly under compression when compared to an enzymatically degraded tissue which mimics age-related changes. Given that the fibrils potentially have a finite capacity to mechanically respond and alter their configuration, these findings are significant in understanding how collagen may alter in structure and gradient in diseased cartilage, and in informing the design of cartilage replacements.


Subject(s)
Cartilage/chemistry , Compressive Strength , Proteoglycans/chemistry , Proteolysis , Stress, Mechanical , Animals , Cattle
3.
ACS Nano ; 11(10): 9728-9737, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28800220

ABSTRACT

Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.


Subject(s)
Fibrillar Collagens/chemistry , Proteoglycans/chemistry , Animals , Cattle , Humans , Osmotic Pressure , Scattering, Small Angle , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...