Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; 390: 117432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241977

ABSTRACT

BACKGROUND AND AIMS: Hypercholesterolemia (HC) has previously been shown to augment the restenotic response in animal models and humans. However, the mechanistic aspects of in-stent restenosis (ISR) on a hypercholesterolemic background, including potential augmentation of systemic and local inflammation precipitated by HC, are not completely understood. CD47 is a transmembrane protein known to abort crucial inflammatory pathways. Our studies have examined the interrelation between HC, inflammation, and ISR and investigated the therapeutic potential of stents coated with a CD47-derived peptide (pepCD47) in the hypercholesterolemic rabbit model. METHODS: PepCD47 was immobilized on metal foils and stents using polybisphosphonate coordination chemistry and pyridyldithio/thiol conjugation. Cytokine expression in buffy coat-derived cells cultured over bare metal (BM) and pepCD47-derivatized foils demonstrated an M2/M1 macrophage shift with pepCD47 coating. HC and normocholesterolemic (NC) rabbit cohorts underwent bilateral implantation of BM and pepCD47 stents (HC) or BM stents only (NC) in the iliac location. RESULTS: A 40 % inhibition of cell attachment to pepCD47-modified compared to BM surfaces was observed. HC increased neointimal growth at 4 weeks post BM stenting. These untoward outcomes were mitigated in hypercholesterolemic rabbits treated with pepCD47-derivatized stents. Compared to NC animals, inflammatory cytokine immunopositivity and macrophage infiltration of peri-strut areas increased in HC animals and were attenuated in HC rabbits treated with pepCD47 stents. CONCLUSIONS: Augmented inflammatory responses underlie severe ISR morphology in hypercholesterolemic rabbits. Blockage of initial platelet and leukocyte attachment to stent struts through CD47 functionalization of stents mitigates the pro-restenotic effects of hypercholesterolemia.


Subject(s)
Coronary Restenosis , Hypercholesterolemia , Humans , Animals , Rabbits , Hypercholesterolemia/complications , CD47 Antigen , Coronary Restenosis/etiology , Coronary Restenosis/prevention & control , Disease Models, Animal , Stents , Inflammation , Peptides/pharmacology , Cytokines
2.
Sci Transl Med ; 15(677): eadc9606, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599005

ABSTRACT

Degenerative mitral valve (MV) regurgitation (MR) is a highly prevalent heart disease that requires surgery in severe cases. Here, we show that a decrease in the activity of the serotonin transporter (SERT) accelerates MV remodeling and progression to MR. Through studies of a population of patients with MR, we show that selective serotonin reuptake inhibitor (SSRI) use and SERT promoter polymorphism 5-HTTLPR LL genotype were associated with MV surgery at younger age. Functional characterization of 122 human MV samples, in conjunction with in vivo studies in SERT-/- mice and wild-type mice treated with the SSRI fluoxetine, showed that diminished SERT activity in MV interstitial cells (MVICs) contributed to the pathophysiology of MR through enhanced serotonin receptor (HTR) signaling. SERT activity was decreased in LL MVICs partially because of diminished membrane localization of SERT. In mice, fluoxetine treatment or SERT knockdown resulted in thickened MV leaflets. Similarly, silencing of SERT in normal human MVICs led to up-regulation of transforming growth factor ß1 (TGFß1) and collagen (COL1A1) in the presence of serotonin. In addition, treatment of MVICs with fluoxetine not only directly inhibited SERT activity but also decreased SERT expression and increased HTR2B expression. Fluoxetine treatment and LL genotype were also associated with increased COL1A1 expression in the presence of serotonin in MVICs, and these effects were attenuated by HTR2B inhibition. These results suggest that assessment of both 5-HTTLPR genotype and SERT-inhibiting treatments may be useful tools to risk-stratify patients with MV disease to estimate the likelihood of rapid disease progression.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve , Humans , Animals , Mice , Mitral Valve/metabolism , Mitral Valve Insufficiency/metabolism , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Fluoxetine/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
3.
J Vis Exp ; (166)2020 12 03.
Article in English | MEDLINE | ID: mdl-33346187

ABSTRACT

The key complications associated with bare metal stents and drug eluting stents are in-stent restenosis and late stent thrombosis, respectively. Thus, improving the biocompatibility of metal stents remains a significant challenge. The goal of this protocol is to describe a robust technique of metal surface modification by biologically active peptides to increase biocompatibility of blood contacting medical implants, including endovascular stents. CD47 is an immunological species-specific marker of self and has anti-inflammatory properties. Studies have shown that a 22 amino acid peptide corresponding to the Ig domain of CD47 in the extracellular region (pepCD47), has anti-inflammatory properties like the full-length protein. In vivo studies in rats, and ex vivo studies in rabbit and human blood experimental systems from our lab have demonstrated that pepCD47 immobilization on metals improves their biocompatibility by preventing inflammatory cell attachment and activation. This paper describes the step-by step protocol for the functionalization of metal surfaces and peptide attachment. The metal surfaces are modified using polyallylamine bisphosphate with latent thiol groups (PABT) followed by deprotection of thiols and amplification of thiol-reactive sites via reaction with polyethyleneimine installed with pyridyldithio groups (PEI-PDT). Finally, pepCD47, incorporating terminal cysteine residues connected to the core peptide sequence through a dual 8-amino-3,6-dioxa-octanoyl spacer, are attached to the metal surface via disulfide bonds. This methodology of peptide attachment to metal surface is efficient and relatively inexpensive and thus can be applied to improve biocompatibility of several metallic biomaterials.


Subject(s)
Blood Cells/cytology , Metals/pharmacology , Peptides/metabolism , Prostheses and Implants , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Blood Cells/drug effects , CD47 Antigen/metabolism , Cell Adhesion/drug effects , Fluorescent Dyes/metabolism , Humans , Macrophages/cytology , Macrophages/drug effects , Microscopy, Fluorescence , Monocytes/cytology , Monocytes/drug effects , Polyethyleneimine/chemistry , Rabbits , Rats , Spectrometry, Fluorescence
4.
Colloids Surf B Biointerfaces ; 192: 111060, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32450498

ABSTRACT

The blood compatibility of various intravascular (IV) devices (e.g., catheters, sensors, etc.) is compromised by activation of platelets that can cause thrombus formation and device failure. Such devices also carry a high risk of microbial infection. Recently, nitric oxide (NO) releasing polymers/devices have been proposed to reduce these clinical problems. CD47, a ubiquitously expressed transmembrane protein with proven anti-inflammation/anti-platelet properties when immobilized on polymeric surfaces, is a good candidate to complement NO release in both effectiveness and longevity. In this work, we successfully appended CD47 peptides (pepCD47) to the surface of biomedical grade polyurethane (PU) copolymers. SIRPα binding and THP-1 cell attachment experiments strongly suggested that the pepCD47 retains its biological properties when bound to PU films. In spite of the potentially high reactivity of NO toward various amino acid residues in CD47, the efficacy of surface-immobilized pepCD47 to prevent inflammatory cell attachment was not inhibited after being subjected to a high flux of NO for three days, demonstrating excellent compatibility of the two species. We further constructed a CD47 surface immobilized silicone tubing filled with NO releasing S-nitrosoglutathione/ascorbic acid (GSNO/AA) solution for synergistic biocompatibility evaluation. Via an ex vivo Chandler loop model, we demonstrate for the first time that NO release and CD47 modification could function synergistically at the blood/material interface and produce greatly enhanced anti-inflammatory/anti-platelet effects. This concept should be readily implementable to create a new generation of thromboresistant/antimicrobial implantable devices.

5.
Acta Biomater ; 104: 231-240, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31935523

ABSTRACT

In-stent restenosis (ISR) and late stent thrombosis are the major complications associated with the use of metal stents and drug eluting stents respectively. Our lab previously investigated the use of peptide CD47 in improving biocompatibility of bare metal stents in a rat carotid stent model and our results demonstrated a significant reduction in platelet deposition and ISR. However, this study did not characterize the stability of the pepCD47 on metal surfaces post storage, sterilization and deployment. Thus, the objective of the present study was 1) to test the stability of the peptide post - storage, sterilization, exposure to shear and mechanical stress and 2) to begin to expand our current knowledge of pepCD47 coated metal surfaces into the preclinical large animal rabbit model. Our results show that the maximum immobilization density of pepCD47 on metal surfaces is approximately 350 ng/cm2. 100% of the pepCD47 was retained on the metal surface post 24 weeks of storage at 4 °C, exposure to physiological shear stress, and mechanical stress of stent expansion. The bioactivity of the pepCD47 was found to be intact post 24 weeks of storage and ethylene oxide sterilization. Finally our ex vivo studies demonstrated that compared to bare metal the rabbit pepCD47 coated surfaces showed - 45% reduced platelet adhesion, a 10-fold decrease in platelet activation, and 93% endothelial cell retention. Thus, our data suggests that pepCD47 coating on metal surfaces is stable and rabbit pepCD47 shows promising preliminary results in preventing thrombosis and not inhibiting the growth of endothelial cells. STATEMENT OF SIGNIFICANCE: Biocompatibility of bare metal stents is a major challenge owing to the significantly high rates of in-stent restenosis. Previously we demonstrated that peptide CD47 functionalization improves the biocompatibility of bare metal stents in rat model. A similar trend was observed in our ex vivo studies where rabbit blood was perfused over the rabbit pepCD47 functionalized surfaces. These results provide valuable proof of concept data for future in vivo rabbit model studies. In addition, we investigated stability of the pepCD47 on metal surface and observed that pepCD47 coating is stable over time and resistant to industrially relevant pragmatic challenges.


Subject(s)
CD47 Antigen/chemistry , Peptides/pharmacology , Stainless Steel/pharmacology , Adult , Animals , Blood Cells/cytology , Blood Cells/drug effects , Cell Communication/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Female , Humans , Male , Metals/pharmacology , Rabbits , Shear Strength , Sterilization , Stress, Mechanical , Surface Properties
6.
J Biol Chem ; 294(33): 12547-12554, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31266805

ABSTRACT

Protein tyrosine phosphatase nonreceptor type 7 (PTPN7), also called hematopoietic protein tyrosine phosphatase, controls extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase in T lymphocytes. Because ERK1/2 plays an important role in regulating thromboxane A2 (TXA2) generation in platelets, we investigated the function of PTPN7 in these cells. Using immunoblot analysis, we detected PTPN7 in both human and mouse platelets but not in PTPN7-null mice. PTPN7 KO mouse platelets exhibited increased platelet functional responses, including aggregation, dense granule secretion, and TXA2 generation, compared with platelets from WT littermates, upon stimulation with both G protein-coupled receptor (GPCR) and glycoprotein VI (GPVI) agonists. Using the GPCR agonist AYPGKF in the presence of the COX inhibitor indomethacin, we found that PTPN7 KO mouse platelets aggregated and secreted to the same extent as WT platelets, suggesting that elevated TXA2 is responsible for the potentiation of platelet functional responses in PTPN7-KO platelets. Phosphorylation of ERK1/2 was also elevated in PTPN7 KO platelets. Stimulation of platelets with the GPVI agonist collagen-related peptide along with the COX inhibitor indomethacin did not result in phosphorylation of ERK1/2, indicating that GPVI-mediated ERK phosphorylation occurs through TXA2 Although bleeding times did not significantly differ between PTPN7-null and WT mice, time to death was significantly faster in PTPN7-null mice than in WT mice in a pulmonary thromboembolism model. We conclude that PTPN7 regulates platelet functional responses downstream of GPCR agonists, but not GPVI agonists, through inhibition of ERK activation and thromboxane generation.


Subject(s)
Blood Platelets/enzymology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Pulmonary Embolism/enzymology , Animals , Blood Platelets/pathology , Disease Models, Animal , Enzyme Activation , Humans , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Oligopeptides/pharmacology , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Pulmonary Embolism/genetics , Pulmonary Embolism/pathology
7.
Thromb Haemost ; 119(8): 1321-1331, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31226719

ABSTRACT

BACKGROUND AND OBJECTIVE: CD45 is a receptor protein tyrosine phosphatase present on the surface of all hematopoietic cells except for erythrocytes and platelets. Proteomics studies, however, have demonstrated the presence of a CD45 c-terminal catalytic peptide in platelets. Therefore, we investigated the functional role of this truncated isoform of CD45 in platelets, which contains the c-terminal catalytic domain but lacks the extracellular region. METHODS AND RESULTS: We used an antibody specific to the c-terminus of CD45 to confirm the presence of a truncated CD45 isoform in platelets. We also examined ex vivo and in vivo platelet function using CD45 knockout (KO) mice. Aggregation and secretion mediated by the glycoprotein VI (GPVI) receptor was impaired in CD45 KO platelets. Consequently, CD45 KO mice had impaired hemostasis indicated by increased tail bleeding times. Also, using a model of pulmonary embolism we showed that CD45 KO mice had defective in vivo thrombus formation. Next, we investigated whether or not the truncated isoform of CD45 had a role in GPVI signaling. The full-length isoform of CD45 is known to regulate Src family kinase (SFK) activation in lymphocytes. We find a similar role for the truncated isoform of CD45 in platelets. SFK activation was impaired downstream of the GPVI receptor in the CD45 KO murine platelets. Consequently, Syk, PLCγ2, and pleckstrin phosphorylations were also impaired in CD45 KO murine platelets. CONCLUSION: We conclude that the truncated CD45 isoform regulates GPVI-mediated signaling and platelet functional responses by regulating SFK activation.


Subject(s)
Blood Platelets/metabolism , Leukocyte Common Antigens/metabolism , Platelet Membrane Glycoproteins/metabolism , src-Family Kinases/metabolism , Animals , Blood Proteins/chemistry , Catalytic Domain , Cell Membrane/metabolism , Hemostasis , Humans , Mice , Mice, Knockout , Peptides/chemistry , Phosphoproteins/chemistry , Phosphorylation , Platelet Activation , Protein Binding , Protein Isoforms , Signal Transduction , Thrombosis/metabolism
8.
J Biol Chem ; 292(35): 14516-14531, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28705934

ABSTRACT

Platelets play a key role in the physiological hemostasis or pathological process of thrombosis. Rhodocytin, an agonist of the C-type lectin-like receptor-2 (CLEC-2), elicits powerful platelet activation signals in conjunction with Src family kinases (SFKs), spleen tyrosine kinase (Syk), and phospholipase γ2 (PLCγ2). Previous reports have shown that rhodocytin-induced platelet aggregation depends on secondary mediators such as thromboxane A2 (TxA2) and ADP, which are agonists for G-protein-coupled receptors (GPCRs) on platelets. How the secondary mediators regulate CLEC-2-mediated platelet activation in terms of signaling is not clearly defined. In this study, we report that CLEC-2-induced Syk and PLCγ2 phosphorylation is potentiated by TxA2 and that TxA2 plays a critical role in the most proximal event of CLEC-2 signaling, i.e. the CLEC-2 receptor tyrosine phosphorylation. We show that the activation of other GPCRs, such as the ADP receptors and protease-activated receptors, can also potentiate CLEC-2 signaling. By using the specific Gq inhibitor, UBO-QIC, or Gq knock-out murine platelets, we demonstrate that Gq signaling, but not other G-proteins, is essential for GPCR-induced potentiation of Syk phosphorylation downstream of CLEC-2. We further elucidated the signaling downstream of Gq and identified an important role for the PLCß-PKCα pathway, possibly regulating activation of SFKs, which are crucial for initiation of CLEC-2 signaling. Together, these results provide evidence for novel Gq-PLCß-PKCα-mediated regulation of proximal CLEC-2 signaling by Gq-coupled receptors.


Subject(s)
Blood Platelets/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Lectins, C-Type/agonists , Models, Biological , Platelet Aggregation/drug effects , Signal Transduction , Viper Venoms/pharmacology , Animals , Blood Platelets/drug effects , Coagulants/pharmacology , Depsipeptides/pharmacology , Enzyme Inhibitors/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Humans , Lectins, C-Type/metabolism , Mice, Knockout , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction/drug effects , Specific Pathogen-Free Organisms , Syk Kinase/metabolism , Thromboxane A2/agonists , Thromboxane A2/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
9.
Platelets ; 26(8): 771-8, 2015.
Article in English | MEDLINE | ID: mdl-25734215

ABSTRACT

Gαq plays an important role in platelet activation by agonists such as thrombin, adenosine diphosphate (ADP) and thromboxane. The significance of Gαq signaling in platelets was established using YM254890, a Gαq/11-specific inhibitor and Gαq knockout murine platelets. However, YM-254890 is no longer available for investigators and there is a need to characterize other Gαq inhibitors. The aim of this study is to characterize the specificity of a compound, {L-threonine,(3R)-N-acetyl-3-hydroxy-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-2,3-idehydro-N-methylalanyl-L-alanyl-N-methyl-L-alanyl-(3R)-3-[[(2S,3R)-3-hydroxy-4-methyl-1-oxo-2-[(1-oxopropyl)amino]pentyl]oxy]-L-leucyl-N,O-dimethyl-,(7 → 1)-lactone (9CI)} (UBO-QIC), as a Gαq inhibitor in platelets. Human platelets treated with UBO-QIC showed a concentration-dependent inhibition of platelet aggregation and secretion by protease-activated receptors (PAR) agonists, U46619 and ADP. UBO-QIC also abolished Gαq pathway signaling events such as calcium mobilization and pleckstrin phosphorylation. UBO-QIC had no nonspecific effects on the Gα12/13 pathway since platelet shape change was intact in Gαq knockout murine platelets stimulated with PAR agonists in the presence of the inhibitor. In addition, UBO-QIC-treated platelets did not affect collagen-related peptide-induced platelet activation suggesting that this inhibitor had no non-specific effects on the GPVI pathway. Furthermore, Akt phosphorylation downstream of the Gαi and Gαz pathways, and vasodilator-stimulated phosphoprotein phosphorylation downstream of the Gαs pathway were not inhibited in UBO-QIC-treated platelets. UBO-QIC is a specific inhibitor for Gαq, which can be a useful tool for investigating Gαq-coupled receptor signaling pathways in platelets.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Depsipeptides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , Adenosine Diphosphate , Animals , Aspirin/pharmacology , Calcium/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Humans , Mice , Mice, Knockout , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Membrane Glycoproteins/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...