Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(13): 3849-3860, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37382923

ABSTRACT

Small-molecule-based amorphous organic semiconductors (OSCs) are essential components of organic photovoltaics and organic light-emitting diodes. The charge carrier mobility of these materials is an integral and limiting factor in regard to their performance. Integrated computational models for the hole mobility, taking into account structural disorder in systems of several thousand molecules, have been the object of research in the past. Due to static and dynamic contributions to the total structural disorder, efficient strategies to sample the charge transfer parameters become necessary. In this paper, we investigate the impact of structural disorder in amorphous OSCs on the transfer parameters and charge mobilities in different materials. We present a sampling strategy for incorporating static and dynamic structural disorder which are based on QM/MM methods using semiempirical Hamiltonians and extensive MD sampling. We show how the disorder affects the distributions of HOMO energies and intermolecular couplings and validate the results using kinetic Monte Carlo simulations of the mobility. We find that dynamic disorder causes an order of magnitude difference in the calculated mobility between morphologies of the same material. Our method allows the sampling of disorder in HOMO energies and couplings, and the statistical analysis enables us to characterize the relevant time scales on which charge transfer occurs in these complex materials. The findings presented here shed light on the interplay of the fluctuating amorphous matrix with charge carrier transport and aid in the development of a better understanding of these complex processes.

2.
Phys Chem Chem Phys ; 24(7): 4576-4587, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35132429

ABSTRACT

4,4-Bis(carbazol-9-yl)-2,2-biphenyl (CBP) is widely used as a host material in phosphorescent organic light-emitting diodes (PhOLEDs). In the present study, we simulate the absorption spectra of CBP in gas and condensed phases, respectively, using the efficient time-dependent long-range corrected tight-binding density functional theory (TD-LC-DFTB). The accuracy of the condensed-phase absorption spectra computed using the structures obtained from classical molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) simulations is examined by comparison with the experimental absorption spectrum. It is found that the TD-LC-DFTB gas-phase spectrum is in good agreement with the GW-BSE spectrum, indicating TD-LC-DFTB is an accurate and robust method in calculating the excitation energies of CBP. For the condensed-phase spectrum, we find that the electrostatic embedding has a minor influence on the excitation energy. Computing accurate absorption spectra is a particular challenge since static and dynamic disorders have to be taken into account. The static disorder results from the molecular packing in the material, which leads to molecule deformations. Since these structural changes sensitively impact the excitation energies of the individual molecules, a proper representation of this static disorder indicates that a reasonable structural model of the material has been generated. The good agreement between computed and experimental absorption spectra is therefore an indicator for the structural model developed. Concerning dynamic disorder, we find that molecular changes occur on long timescales in the ns-regime, which requires the use of fast computation approaches to reach convergence. The structural models derived in this work are the basis for future studies of charge and exciton transfer in CBP and related materials, also concerning the degradation mechanisms of CBP-based PhOLEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...