Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 11(41): 7155-63, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24057196

ABSTRACT

The primary quorum sensing system in the opportunistic pathogen Pseudomonas aeruginosa is regulated through the synthesis and secretion of N-3-oxo-dodecanoyl-L-homoserine lactone (C12) which binds the transcriptional activator LasR. In this study we report the design, synthesis and biological evaluation of new analogs of C12. Analysis of the autoinducer binding site cavity of LasR revealed a positively charged cavity near the center of bound C12. Accordingly, we synthesized two piperidine-C12 diastereoisomers and tested their biological activity. Both analogs proved to be strong LasR agonists that showed a synergistic effect when presented together with the natural ligand. Moreover, binding of the analogs resulted in phenotypic changes characteristic of QS controlled receptor activation.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/agonists , Homoserine/analogs & derivatives , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Trans-Activators/agonists , 4-Butyrolactone/chemical synthesis , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Dose-Response Relationship, Drug , Homoserine/chemical synthesis , Homoserine/chemistry , Homoserine/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
2.
Proteins ; 57(1): 51-86, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15326594

ABSTRACT

G-protein coupled receptors (GPCRs) are a major group of drug targets for which only one x-ray structure is known (the nondrugable rhodopsin), limiting the application of structure-based drug discovery to GPCRs. In this paper we present the details of PREDICT, a new algorithmic approach for modeling the 3D structure of GPCRs without relying on homology to rhodopsin. PREDICT, which focuses on the transmembrane domain of GPCRs, starts from the primary sequence of the receptor, simultaneously optimizing multiple 'decoy' conformations of the protein in order to find its most stable structure, culminating in a virtual receptor-ligand complex. In this paper we present a comprehensive analysis of three PREDICT models for the dopamine D2, neurokinin NK1, and neuropeptide Y Y1 receptors. A shorter discussion of the CCR3 receptor model is also included. All models were found to be in good agreement with a large body of experimental data. The quality of the PREDICT models, at least for drug discovery purposes, was evaluated by their successful utilization in in-silico screening. Virtual screening using all three PREDICT models yielded enrichment factors 9-fold to 44-fold better than random screening. Namely, the PREDICT models can be used to identify active small-molecule ligands embedded in large compound libraries with an efficiency comparable to that obtained using crystal structures for non-GPCR targets.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Algorithms , Amino Acid Sequence , Animals , Binding Sites , Combinatorial Chemistry Techniques , Computer Simulation , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Chemical , Models, Molecular , Monte Carlo Method , Protein Conformation , Protein Structure, Secondary , Receptors, Dopamine D2/chemistry , Receptors, Neurokinin-1/chemistry , Receptors, Neuropeptide Y/chemistry , Rhodopsin/chemistry , Stereoisomerism , Thermodynamics
3.
Proc Natl Acad Sci U S A ; 101(31): 11304-9, 2004 Aug 03.
Article in English | MEDLINE | ID: mdl-15277683

ABSTRACT

The application of structure-based in silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human G protein-coupled receptors (GPCRs), one of the most important families of drug targets, where in the absence of x-ray structures, one has to rely on in silico 3D models. We report repeated success in using ab initio in silico GPCR models, generated by the predict method, for blind in silico screening when applied to a set of five different GPCR drug targets. More than 100,000 compounds were typically screened in silico for each target, leading to a selection of <100 "virtual hit" compounds to be tested in the lab. In vitro binding assays of the selected compounds confirm high hit rates, of 12-21% (full dose-response curves, Ki < 5 microM). In most cases, the best hit was a novel compound (New Chemical Entity) in the 1- to 100-nM range, with very promising pharmacological properties, as measured by a variety of in vitro and in vivo assays. These assays validated the quality of the hits as lead compounds for drug discovery. The results demonstrate the usefulness and robustness of ab initio in silico 3D models and of in silico screening for GPCR drug discovery.


Subject(s)
Algorithms , Drug Design , Models, Chemical , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Binding Sites , Combinatorial Chemistry Techniques , Humans , In Vitro Techniques , Protein Structure, Quaternary , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, CCR3 , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism , Receptors, Serotonin, 5-HT4/chemistry , Receptors, Serotonin, 5-HT4/metabolism
4.
J Cell Biol ; 157(3): 455-68, 2002 Apr 29.
Article in English | MEDLINE | ID: mdl-11980920

ABSTRACT

Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.


Subject(s)
Apoptosis , Autophagy/physiology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Membrane/pathology , Nerve Tissue Proteins/metabolism , Antigens, CD/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Caspases/metabolism , Cell Line , Death-Associated Protein Kinases , HeLa Cells , Humans , Interferon-gamma/physiology , Nerve Tissue Proteins/genetics , RNA, Antisense/biosynthesis , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Tumor Necrosis Factor, Type I , Transport Vesicles/physiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...