Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(2): e1011171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306398

ABSTRACT

Foldy is a cloud-based application that allows non-computational biologists to easily utilize advanced AI-based structural biology tools, including AlphaFold and DiffDock. With many deployment options, it can be employed by individuals, labs, universities, and companies in the cloud without requiring hardware resources, but it can also be configured to utilize locally available computers. Foldy enables scientists to predict the structure of proteins and complexes up to 6000 amino acids with AlphaFold, visualize Pfam annotations, and dock ligands with AutoDock Vina and DiffDock. In our manuscript, we detail Foldy's interface design, deployment strategies, and optimization for various user scenarios. We demonstrate its application through case studies including rational enzyme design and analyzing proteins with domains of unknown function. Furthermore, we compare Foldy's interface and management capabilities with other open and closed source tools in the field, illustrating its practicality in managing complex data and computation tasks. Our manuscript underlines the benefits of Foldy as a day-to-day tool for life science researchers, and shows how Foldy can make modern tools more accessible and efficient.


Subject(s)
Proteins , Software , Humans , Amino Acids
2.
ACS Synth Biol ; 13(1): 206-219, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38113125

ABSTRACT

In this study, we explored the development of engineered inducible systems. Publicly available data from previous transposon sequencing assays were used to identify regulators of metabolism in Pseudomonas putida KT2440. For AraC family regulators (AFRs) represented in these data, we posited AFR/promoter/inducer groupings. Twelve promoters were characterized for a response to their proposed inducers in P. putida, and the resultant data were used to create and test nine two-plasmid sensor systems in Escherichia coli. Several of these were further developed into a palette of single-plasmid inducible systems. From these experiments, we observed an unreported inducer response from a previously characterized AFR, demonstrated that the addition of a P. putida transporter improved the sensor dynamics of an AFR in E. coli, and identified an uncharacterized AFR with a novel potential inducer specificity. Finally, targeted mutations in an AFR, informed by structural predictions, enabled the further diversification of these inducible plasmids.


Subject(s)
Escherichia coli Proteins , Pseudomonas putida , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic/genetics , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Plasmids/genetics , Gene Expression Regulation, Bacterial/genetics , Escherichia coli Proteins/genetics , AraC Transcription Factor/genetics
3.
mBio ; : e0262223, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991384

ABSTRACT

IMPORTANCE: We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.

4.
Commun Biol ; 5(1): 1363, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509863

ABSTRACT

Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Fatty Acids, Nonesterified/metabolism , Biofuels , Biomass , Fatty Acids/metabolism
5.
Appl Environ Microbiol ; 88(7): e0243021, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35285712

ABSTRACT

Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.


Subject(s)
Pseudomonas putida , Amino Acids/metabolism , Nitrogen/metabolism , Phenotype , Pseudomonas putida/metabolism , Transaminases/genetics , Transaminases/metabolism
6.
Appl Environ Microbiol ; 86(21)2020 10 15.
Article in English | MEDLINE | ID: mdl-32826213

ABSTRACT

With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of the organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. The gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes coexist, making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged random barcode transposon sequencing (RB-Tn-Seq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on fatty acids of varying chain lengths indicated specific enzyme substrate preferences and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data, we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with coenzyme A (CoA). Because fatty acids and alcohols may serve as both feedstocks and final products of metabolic-engineering efforts, the fitness data presented here will help guide future genomic modifications toward higher titers, rates, and yields.IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here, we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of the bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and to channel the flux of specific pathway intermediates as desired.


Subject(s)
Alcohols/metabolism , DNA Transposable Elements , DNA, Bacterial , Fatty Acids/metabolism , Pseudomonas putida/metabolism , Metabolic Networks and Pathways , Sequence Analysis, DNA
7.
Metab Eng Commun ; 10: e00119, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32280587

ABSTRACT

Pseudomonas putida is a saprophytic bacterium with robust metabolisms and strong solvent tolerance making it an attractive host for metabolic engineering and bioremediation. Due to its diverse carbon metabolisms, its genome encodes an array of proteins and enzymes that can be readily applied to produce valuable products. In this work we sought to identify design principles and bottlenecks in the production of type III polyketide synthase (T3PKS)-derived compounds in P. putida. T3PKS products are widely used as nutraceuticals and medicines and often require aromatic starter units, such as coumaroyl-CoA, which is also an intermediate in the native coumarate catabolic pathway of P. putida. Using a randomly barcoded transposon mutant (RB-TnSeq) library, we assayed gene functions for a large portion of aromatic catabolism, confirmed known pathways, and proposed new annotations for two aromatic transporters. The 1,3,6,8-tetrahydroxynapthalene synthase of Streptomyces coelicolor (RppA), a microbial T3PKS, was then used to rapidly assay growth conditions for increased T3PKS product accumulation. The feruloyl/coumaroyl CoA synthetase (Fcs) of P. putida was used to supply coumaroyl-CoA for the curcuminoid synthase (CUS) of Oryza sativa, a plant T3PKS. We identified that accumulation of coumaroyl-CoA in this pathway results in extended growth lag times in P. putida. Deletion of the second step in coumarate catabolism, the enoyl-CoA hydratase-lyase (Ech), resulted in increased production of the type III polyketide bisdemethoxycurcumin.

8.
ACS Synth Biol ; 9(1): 53-62, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31841635

ABSTRACT

Caprolactam is an important polymer precursor to nylon traditionally derived from petroleum and produced on a scale of 5 million tons per year. Current biological pathways for the production of caprolactam are inefficient with titers not exceeding 2 mg/L, necessitating novel pathways for its production. As development of novel metabolic routes often require thousands of designs and result in low product titers, a highly sensitive biosensor for the final product has the potential to rapidly speed up development times. Here we report a highly sensitive biosensor for valerolactam and caprolactam from Pseudomonas putida KT2440 which is >1000× more sensitive to an exogenous ligand than previously reported sensors. Manipulating the expression of the sensor oplR (PP_3516) substantially altered the sensing parameters, with various vectors showing Kd values ranging from 700 nM (79.1 µg/L) to 1.2 mM (135.6 mg/L). Our most sensitive construct was able to detect in vivo production of caprolactam above background at ∼6 µg/L. The high sensitivity and range of OplR is a powerful tool toward the development of novel routes to the biological synthesis of caprolactam.


Subject(s)
Biosensing Techniques/methods , Caprolactam/metabolism , Lactams/metabolism , Metabolic Engineering/methods , Pseudomonas putida/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ligands , Plasmids/genetics
9.
ACS Synth Biol ; 8(10): 2385-2396, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31518500

ABSTRACT

A significant bottleneck in synthetic biology involves screening large genetically encoded libraries for desirable phenotypes such as chemical production. However, transcription factor-based biosensors can be leveraged to screen thousands of genetic designs for optimal chemical production in engineered microbes. In this study we characterize two glutarate sensing transcription factors (CsiR and GcdR) from Pseudomonas putida. The genomic contexts of csiR homologues were analyzed, and their DNA binding sites were bioinformatically predicted. Both CsiR and GcdR were purified and shown to bind upstream of their coding sequencing in vitro. CsiR was shown to dissociate from DNA in vitro when exogenous glutarate was added, confirming that it acts as a genetic repressor. Both transcription factors and cognate promoters were then cloned into broad host range vectors to create two glutarate biosensors. Their respective sensing performance features were characterized, and more sensitive derivatives of the GcdR biosensor were created by manipulating the expression of the transcription factor. Sensor vectors were then reintroduced into P. putida and evaluated for their ability to respond to glutarate and various lysine metabolites. Additionally, we developed a novel mathematical approach to describe the usable range of detection for genetically encoded biosensors, which may be broadly useful in future efforts to better characterize biosensor performance.


Subject(s)
Glutarates/metabolism , Lysine/metabolism , Pseudomonas putida/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic/genetics , Pseudomonas putida/genetics , Synthetic Biology/methods
10.
Metab Eng ; 55: 92-101, 2019 09.
Article in English | MEDLINE | ID: mdl-31226347

ABSTRACT

Common strategies for conversion of lignocellulosic biomass to chemical products center on deconstructing biomass polymers into fermentable sugars. Here, we demonstrate an alternative strategy, a growth-coupled, high-yield bioconversion, by feeding cells a non-sugar substrate, by-passing central metabolism, and linking a key metabolic step to generation of acetyl-CoA that is required for biomass and energy generation. Specifically, we converted levulinic acid (LA), an established degradation product of lignocellulosic biomass, to butanone (a.k.a. methyl-ethyl ketone - MEK), a widely used industrial solvent. Our strategy combines a catabolic pathway from Pseudomonas putida that enables conversion of LA to 3-ketovaleryl-CoA, a CoA transferase that generates 3-ketovalerate and acetyl-CoA, and a decarboxylase that generates 2-butanone. By removing the ability of E. coli to consume LA and supplying excess acetate as a carbon source, we built a strain of E. coli that could convert LA to butanone at high yields, but at the cost of significant acetate consumption. Using flux balance analysis as a guide, we built a strain of E. coli that linked acetate assimilation to production of butanone. This strain was capable of complete bioconversion of LA to butanone with a reduced acetate requirement and increased specific productivity. To demonstrate the bioconversion on real world feedstocks, we produced LA from furfuryl alcohol, a compound readily obtained from biomass. These LA feedstocks were found to contain inhibitors that prevented cell growth and bioconversion of LA to butanone. We used a combination of column chromatography and activated carbon to remove the toxic compounds from the feedstock, resulting in LA that could be completely converted to butanone. This work motivates continued collaboration between chemical and biological catalysis researchers to explore alternative conversion pathways and the technical hurdles that prevent their rapid deployment.


Subject(s)
Butanones/metabolism , Escherichia coli , Levulinic Acids/metabolism , Microorganisms, Genetically-Modified , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/genetics
11.
Metab Eng ; 48: 63-71, 2018 07.
Article in English | MEDLINE | ID: mdl-29807110

ABSTRACT

In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse ß-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering strategy. By dividing the heterologous enzymes in the pathway into different modules, we were able to identify and evaluate homologs of each enzyme within the pathway and identify several capable of enhancing medium chain alcohol titers and/or selectivity. In general, the identity of the trans-2-enoyl-CoA reductase (TER) and the direct overexpression of the thiolase (FadA) and ß-hydroxy-acyl-CoA reductase (FadB) improved alcohol titer and the identity of the FadBA complex influenced the dominant chain length. Next, we linked the anaerobically induced VHb promoter from Vitreoscilla hemoglobin to each gene to remove the need for chemical inducers and ensure robust expression. The highest performing strain with the autoinduced reverse ß-oxidation pathway produced n-alcohols at titers of 1.8 g/L with an apparent molar yield of 0.2 on glucose consumed in rich medium (52% of theoretical yield).


Subject(s)
Escherichia coli K12 , Fatty Alcohols/metabolism , Metabolic Engineering , Anaerobiosis/genetics , Bacterial Proteins/genetics , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Gene Expression , Oxidation-Reduction , Oxidoreductases/biosynthesis , Oxidoreductases/genetics , Promoter Regions, Genetic , Truncated Hemoglobins/genetics , Vitreoscilla/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...