Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4704, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948594

ABSTRACT

Current models infer that the microtubule-based mitotic spindle is built from GDP-tubulin with small GTP caps at microtubule plus-ends, including those that attach to kinetochores, forming the kinetochore-fibres. Here we reveal that kinetochore-fibres additionally contain a dynamic mixed-nucleotide zone that reaches several microns in length. This zone becomes visible in cells expressing fluorescently labelled end-binding proteins, a known marker for GTP-tubulin, and endogenously-labelled HURP - a protein which we show to preferentially bind the GDP microtubule lattice in vitro and in vivo. We find that in mitotic cells HURP accumulates on the kinetochore-proximal region of depolymerising kinetochore-fibres, whilst avoiding recruitment to nascent polymerising K-fibres, giving rise to a growing "HURP-gap". The absence of end-binding proteins in the HURP-gaps leads us to postulate that they reflect a mixed-nucleotide zone. We generate a minimal quantitative model based on the preferential binding of HURP to GDP-tubulin to show that such a mixed-nucleotide zone is sufficient to recapitulate the observed in vivo dynamics of HURP-gaps.


Subject(s)
Kinetochores , Tubulin , Guanosine Triphosphate/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nucleotides/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
2.
Elife ; 102021 09 27.
Article in English | MEDLINE | ID: mdl-34569933

ABSTRACT

Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.


Subject(s)
Actin Cytoskeleton/metabolism , Myosins/metabolism , Single Molecule Imaging/methods , Green Fluorescent Proteins/metabolism , Humans , Muscle, Striated/metabolism , Protein Binding , Stochastic Processes , Troponin/metabolism
3.
Proc Natl Acad Sci U S A ; 116(14): 6828-6835, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877248

ABSTRACT

Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.


Subject(s)
Carrier Proteins/chemistry , Molecular Dynamics Simulation , Myosins/chemistry , Tropomyosin/chemistry , Animals , Carrier Proteins/metabolism , Chickens , Humans , Myocardial Contraction , Myocardium/chemistry , Myocardium/metabolism , Myosins/metabolism , Protein Binding , Protein Domains , Tropomyosin/metabolism
4.
Methods Mol Biol ; 1431: 141-50, 2016.
Article in English | MEDLINE | ID: mdl-27283307

ABSTRACT

Many protein interactions with DNA require specific sequences; however, how these sequences are located remains uncertain. DNA normally appears bundled in solution but, to study DNA-protein interactions, the DNA needs to be elongated. Using fluidics single DNA strands can be efficiently and rapidly elongated between beads immobilized on a microscope slide surface. Such "DNA tightropes" offer a valuable method to study protein search mechanisms. Real-time fluorescence imaging of these interactions provides quantitative descriptions of search mechanism at the single molecule level. In our lab, we use this method to study the complex process of nucleotide excision DNA repair to determine mechanisms of damage detection, lesion removal, and DNA excision.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Single Molecule Imaging/methods , Algorithms , Binding Sites , DNA Repair , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , Microfluidics , Microscopy, Fluorescence , Nanotechnology , Protein Binding , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL