Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ecancermedicalscience ; 18: 1685, 2024.
Article in English | MEDLINE | ID: mdl-38566759

ABSTRACT

Introduction: The incidence of squamous carcinoma of the oropharynx (OPSCC) has presented an increase worldwide, a fact that occurs along with a phenomenon of epidemiological transition, whose pathogenesis is linked to human papilloma virus (HPV) in a significant part of the cases. Published evidence at the Latin American level is scarce. The present study aims to evaluate the epidemiological and clinical characteristics of patients with oropharyngeal cancer treated in a public oncology reference centre in Chile. Methodology: A cross-sectional study was carried out. Patients with histological confirmation of OPSCC aged 18 years or older, referred to the National Cancer Institute of Chile between 2012 and 2023 were included. The association with HPV was determined by immunohistochemistry for p16. Results: 178 patients were analysed, most of them in locoregionally advanced stages involving the palatine tonsil. Seventy-seven percent were male, with a median age of 60 years. Sixty-seven percent of patients were positive for p16, with a progressive increase to 85% in the last 2 years of the study. The p16(+) patients were younger and had fewer classical risk factors. Primary treatment was radiotherapy in 94% of patients. Conclusion: The epidemiological profile of patients with OPSCC treated in a Chilean public oncology referral centre reflects the epidemiological transition observed in developed countries. This change justifies the need to adapt health policies and conduct research that considers the characteristics of this new epidemiological profile.

2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542313

ABSTRACT

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Subject(s)
Benzamides , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Androgen Antagonists , Transcription Factors , Cell Line, Tumor , Receptors, Androgen/metabolism , Epithelial-Mesenchymal Transition/genetics , Prostatic Neoplasms, Castration-Resistant/pathology
3.
J Autoimmun ; 138: 103037, 2023 07.
Article in English | MEDLINE | ID: mdl-37229808

ABSTRACT

Salivary secretory dysfunction in SS-patients is associated with altered proteostasis, upregulation of ATF6α and components of the ERAD complex, such as SEL1L, and downregulation of XBP-1s and GRP78. Hsa-miR-424-5p is downregulated and hsa-miR-513c-3p is overexpressed in salivary glands from SS-patients. These miRNAs emerged as candidates that could regulate ATF6/SEL1L and XBP-1s/GRP78 levels, respectively. This study aimed to evaluate the effect of IFN-γ on hsa-miR-424-5p and hsa-miR-513c-3p expression and how these miRNAs regulate their targets. In labial salivary glands (LSG) biopsies from 9 SS-patients and 7 control subjects and IFN-γ-stimulated 3D-acini were analyzed. hsa-miR-424-5p and hsa-miR-513c-3p levels were measured by TaqMan assays and their localization by ISH. mRNA, protein levels, and localization of ATF6, SEL1L, HERP, XBP-1s and GRP78 were determined by qPCR, Western blot, or immunofluorescence. Functional and interaction assays were also performed. In LSGs from SS-patients and IFN-γ-stimulated 3D-acini, hsa-miR-424-5p was downregulated and ATF6α and SEL1L were upregulated. ATF6α and SEL1L were decreased after hsa-miR-424-5p overexpression, while ATF6α, SEL1L and HERP increased after hsa-miR-424-5p silencing. Interaction assays revealed that hsa-miR-424-5p targets ATF6α directly. hsa-miR-513c-3p was upregulated and XBP-1s and GRP78 were downregulated. XBP-1s and GRP78 were decreased after hsa-miR-513c-3p overexpression, while increases in XBP-1s and GRP78 were observed after hsa-miR-513c-3p silencing. Furthermore, we determined that hsa-miR-513c-3p targets XBP-1s directly. Significant correlations were found between both miRNA levels and clinical parameters. In conclusion, IFN-γ-dependent hsa-miR-424-5p and hsa-miR-513c-3p levels affect the expression of important factors involved in cellular proteostasis that control secretory function in LSG from SS-patients.


Subject(s)
MicroRNAs , Salivary Glands , Sjogren's Syndrome , Humans , Endoplasmic Reticulum Chaperone BiP , Interferon-gamma/genetics , Interferon-gamma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proteins/genetics , Proteins/metabolism , Salivary Glands/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/metabolism
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499245

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.


Subject(s)
Epithelial-Mesenchymal Transition , Prostatic Neoplasms , Male , Humans , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Recurrence, Local/genetics , Prostatic Neoplasms/metabolism , Orchiectomy , Neoplasm Metastasis
5.
Oncol Rep ; 46(2)2021 Aug.
Article in English | MEDLINE | ID: mdl-34165174

ABSTRACT

Endothelin­1 (ET­1) is involved in the regulation of steroidogenesis. Additionally, patients with castration­resistant prostate cancer (PCa) have a higher ET­1 plasma concentration than those with localized PCa and healthy individuals. The aim of the present study was to evaluate the effect of ET­1 on steroidogenesis enzymes, androgen receptor (AR) and testosterone (T) production in PCa cells. The expression levels of endothelin receptors in prostate tissue from patients with localized PCa by immunohistochemistry, and those in LNCaP and PC3 cells were determined reverse transcription­quantitative PCR (RT­qPCR) and western blotting. Furthermore, the expression levels of ET­1 were determined in LNCaP and PC3 cells by RT­qPCR and western blotting. The ET­1 receptor activation was evaluated by intracellular calcium measurement, the expression levels of AR and enzymes participating in steroidogenesis [cytochrome P450 family 11 subfamily A member 1 (CyP11A1), cytochrome P450 family 17 subfamily A member 1, aldo­keto reductase family member C2 and 3ß­hydroxysteroid dehydrogenase/isomerase 2 (3ß HSD2)] were determined by western blotting and T concentration was determined by ELISA using PC3 cells. The present results revealed higher expression levels of endothelin A receptor (ETAR) in tissues obtained from samples of patients with PCa with a low Gleason Score. No changes were identified for endothelin B receptor (ETBR). PC3 cells expressed higher levels of ET­1 and ETAR, while LNCaP cells exhibited higher expression levels of ETBR. Blocking of ETAR and endothelin B receptor decreased the expression levels of CyP11A1 and 3ß HSD2 enzymes and AR in PC3 cells, as well as T secretion. These findings suggested that ET­1 has a potential role in modulating the intratumoral steroidogenesis pathway and might have relevance as a possible therapeutic target.


Subject(s)
Endothelin-1/metabolism , Prostatic Neoplasms/metabolism , Receptor, Endothelin A/metabolism , Receptors, Androgen/genetics , Testosterone/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged , Aged, 80 and over , Cell Line, Tumor , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Humans , Male , Middle Aged , Neoplasm Grading , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptor, Endothelin B/metabolism , Tissue Array Analysis , Up-Regulation
6.
Oncol Rep ; 45(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760173

ABSTRACT

Prostate cancer (PCa) is the second most diagnosed type of cancer in men worldwide. Advanced PCa is resistant to conventional therapies and high recurrence has been associated with high rates of metastasis. Cancer stem cells (CSCs) have been proposed to be responsible for this, due to their ability of self­renewal and differentiation into other cell types. Zinc finger E­box­binding homeobox 1 (ZEB1), a transcription factor involved in the regulation of epithelial­mesenchymal transition (EMT), has been associated with the activation of several mechanisms that lead to resistance to treatment. As recent evidence has shown that CSCs may originate from non­CSCs during EMT, it was hypothesized that knocking down ZEB1 expression in PCa cell lines could revert some properties associated with CSCs. Using lentiviraltransduction, ZEB1 expression was silenced in the PCa DU145 and LNCaP cell lines. The mRNA and protein expression levels of key canonical CSC markers (Krüppel­like factor 4, SOX2, CD44 and CD133) were determined using reverse transcription­-quantitative PCR and western blot analysis, respectively. In addition, the colony forming ability of the ZEB1­knockdown cells was evaluated, and the type of colonies formed (holoclones, paraclones and meroclones) was also characterized. Finally, the ability to form prostatospheres was evaluated in vitro. It was found that in ZEB1­knockdown DU145 cells, the expression levels of CSC phenotype markers (CD44, CD133 and SOX2) were decreased compared with those in the control group. Furthermore, ZEB1­knockdown cells exhibited a lower ability to form prostatospheres and to generate colonies. In conclusion, stable silencing of ZEB1 reversed CSC properties in PCa cell lines. Since ZEB1 is associated with malignancy, therapy resistance and a CSC phenotype in PCa cell lines, targeting ZEB1 may be a key factor to eradicate CSCs and improve the prognosis of patients with advanced PCa.


Subject(s)
Cell Self Renewal/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Self Renewal/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Male , Prostate/cytology , Prostate/pathology , Prostatic Neoplasms/pathology , Tumor Stem Cell Assay , Zinc Finger E-box-Binding Homeobox 1/antagonists & inhibitors , Zinc Finger E-box-Binding Homeobox 1/genetics
7.
Cell Mol Life Sci ; 78(6): 2893-2910, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33068124

ABSTRACT

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.


Subject(s)
Cell Proliferation/drug effects , Coenzyme A Ligases/metabolism , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Animals , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Coenzyme A Ligases/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Prostate/cytology , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Steroids/blood , Xenograft Model Antitumor Assays
8.
Mol Oncol ; 14(2): 347-362, 2020 02.
Article in English | MEDLINE | ID: mdl-31788944

ABSTRACT

Endothelin-1 is a mitogenic peptide that activates several proliferation, survival, and invasiveness pathways. The effects of endothelin-1 rely on its activation by endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms with different cytoplasmic N termini. Recently, isoform ECE1c has been suggested to have a role in cancer aggressiveness. The N terminus of ECE1c is phosphorylated by protein kinase CK2 (also known as casein kinase 2), and this enhances its stability and promotes invasiveness in colorectal cancer cells. However, it is not known how phosphorylation improves stability and why this is correlated with increased aggressiveness. We hypothesized that CK2 phosphorylation protects ECE1c from N-terminal ubiquitination and, consequently, from proteasomal degradation. Here, we show that lysine 6 is the bona fide residue involved in ubiquitination of ECE1c and its mutation to arginine (ECE1cK6R ) significantly impairs proteasomal degradation, thereby augmenting ECE1c stability, even in the presence of the CK2 inhibitor silmitasertib. Furthermore, colorectal cancer cells overexpressing ECE1cK6R displayed enhanced cancer stem cell (CSC) traits, including increased stemness gene expression, chemoresistance, self-renewal, and colony formation and spheroid formation in vitro, as well as enhanced tumor growth and metastasis in vivo. These findings suggest that CK2-dependent phosphorylation enhances ECE1c stability, promoting an increase in CSC-like traits. Therefore, phospho-ECE1c may be a biomarker of poor prognosis and a potential therapeutic target for colorectal cancer.


Subject(s)
Carcinogenesis/metabolism , Colorectal Neoplasms/metabolism , Endothelin-Converting Enzymes/metabolism , Neoplastic Stem Cells/metabolism , Animals , Carcinogenesis/genetics , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Endothelin-Converting Enzymes/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Mutation , Naphthyridines/pharmacology , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Phenazines/pharmacology , Phosphorylation , Prognosis , Protein Stability , Recombinant Proteins , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...