Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927967

ABSTRACT

Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.

2.
Cancers (Basel) ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37297001

ABSTRACT

Cutaneous melanoma ranks as the fifth most common cancer in the United States and represents one of the deadliest forms of skin cancer. While recent advances in systemic targeted therapies and immunotherapies have positively impacted melanoma survival, the survival rate of stage IV melanoma remains at a meager 32%. Unfortunately, tumor resistance can impede the effectiveness of these treatments. Oxidative stress is a pivotal player in all stages of melanoma progression, with a somewhat paradoxical function that promotes tumor initiation but hinders vertical growth and metastasis in later disease. As melanoma progresses, it employs adaptive mechanisms to lessen oxidative stress in the tumor environment. Redox metabolic rewiring has been implicated in acquired resistance to BRAF/MEK inhibitors. A promising approach to enhance the response to therapy involves boosting intracellular ROS production using active biomolecules or targeting enzymes that regulate oxidative stress. The complex interplay between oxidative stress, redox homeostasis, and melanomagenesis can also be leveraged in a preventive context. The purpose of this review is to provide an overview of oxidative stress in melanoma, and how the antioxidant system may be manipulated in a therapeutic context for improved efficacy and survival.

3.
Cancers (Basel) ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36291795

ABSTRACT

TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.

4.
Adv Healthc Mater ; 11(20): e2200849, 2022 10.
Article in English | MEDLINE | ID: mdl-35930707

ABSTRACT

Exosomes show great potential in diagnostic and therapeutic applications. Inspired by the human innate immune defense, herein, we report engineered exosomes derived from monocytic cells treated with immunomodulating compounds 1α,25-dihydroxyvitamin D3, and CYP24A1 inhibitor VID400 which are slowly released from electrospun nanofiber matrices. These engineered exosomes contain significantly more cathelicidin/LL-37 when compared with exosomes derived from either untreated cells or Cathelicidin Human Tagged ORF Clone transfected cells. In addition, such exosomes exhibit multiple biological functions evidenced by killing bacteria, facilitating human umbilical vein endothelial cell tube formation, and enhancing skin cell proliferation and migration. Taken together, the engineered exosomes developed in this study can be used as therapeutics alone or in combination with other biomaterials for effective infection management, wound healing, and tissue regeneration.


Subject(s)
Exosomes , Humans , Vitamin D3 24-Hydroxylase , Antimicrobial Cationic Peptides/pharmacology , Human Umbilical Vein Endothelial Cells , Biocompatible Materials , Cathelicidins
5.
Cells ; 11(13)2022 07 03.
Article in English | MEDLINE | ID: mdl-35805190

ABSTRACT

Transcriptional regulator BCL11A plays a crucial role in coordinating a suite of developmental processes including skin morphogenesis, barrier functions and lipid metabolism. There is little or no reports so far documenting the role of BCL11A in postnatal adult skin homeostasis and in the physiological process of tissue repair and regeneration. The current study establishes for the first time the In Vivo role of epidermal BCL11A in maintaining adult epidermal homeostasis and as a negative regulator of cutaneous wound healing. Conditional ablation of Bcl11a in skin epidermal keratinocytes (Bcl11aep-/-mice) enhances the keratinocyte proliferation and differentiation program, suggesting its critical role in epidermal homeostasis of adult murine skin. Further, loss of keratinocytic BCL11A promotes rapid closure of excisional wounds both in a cell autonomous manner likely via accelerating wound re-epithelialization and in a non-cell autonomous manner by enhancing angiogenesis. The epidermis specific Bcl11a knockout mouse serves as a prototype to gain mechanistic understanding of various downstream pathways converging towards the manifestation of an accelerated healing phenotype upon its deletion.


Subject(s)
Epidermis , Keratinocytes , Repressor Proteins/metabolism , Animals , Homeostasis , Keratinocytes/metabolism , Mice , Skin/metabolism , Transcription Factors/metabolism , Wound Healing
6.
Cancers (Basel) ; 14(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35326683

ABSTRACT

Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources. Therefore, melanocytes employ numerous antioxidant defenses to protect themselves; these are largely regulated by the master stress response transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2). Key effector transcriptional targets of NRF2 include the components of the glutathione and thioredoxin antioxidant systems. Despite these defenses, melanocyte DNA often is subject to mutations that result in the dysregulation of the proliferative mitogen-activated protein kinase (MAPK) pathway and the cell cycle. Following tumor initiation, endogenous antioxidant systems are co-opted, a consequence of elevated oxidative stress caused by metabolic reprogramming, to establish an altered redox homeostasis. This altered redox homeostasis contributes to tumor progression and metastasis, while also complicating the application of exogenous antioxidant treatments. Further understanding of melanocyte redox homeostasis, in the presence or absence of disease, would contribute to the development of novel therapies to aid in the prevention and treatment of melanomas and other skin diseases.

7.
Mol Pharm ; 19(3): 974-984, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35179903

ABSTRACT

Surgical site infections represent a significant clinical problem. Herein, we report a nanofiber dressing for topical codelivery of immunomodulating compounds including 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and VID400, a CYP24A1 inhibitor in a sustained manner, for inducing the expression of the endogenous cathelicidin antimicrobial peptide (CAMP) gene encoding the hCAP18 protein, which is processed into the LL-37 peptide. Nanofiber wound dressings with coencapsulation of 1,25(OH)2D3 and VID400 were generated by electrospinning. Both 1,25(OH)2D3 and VID400 were coencapsulated into nanofibers with loading efficiencies higher than 90% and exhibited a prolonged release from nanofiber membranes longer than 28 days. Incubation with 1,25(OH)2D3/VID400-coencapsulated poly(ϵ-caprolactone) nanofiber membranes greatly induced the hCAP18/LL-37 gene expression in monocytes, neutrophils, and keratinocytes in vitro. Moreover, the administration of 1,25(OH)2D3/VID400-coencapsulated nanofiber membranes dramatically promoted the hCAP18/LL-37 expression in dermal wounds created in both human CAMP transgenic mice and human skin tissues. The 1,25(OH)2D3- and VID400-coencapsulated nanofiber dressings enhanced innate immunity via the more effective induction of antimicrobial peptide than the free drug alone or 1,25(OH)2D3-loaded nanofibers. Together, 1,25(OH)2D3/VID400-embedded nanofiber dressings presented in this study show potential in preventing surgical site infections.


Subject(s)
Nanofibers , Animals , Antimicrobial Peptides , Bandages , Imidazoles , Mice , Nanofibers/chemistry , Surgical Wound Infection , Vitamin D/analogs & derivatives , Vitamin D3 24-Hydroxylase
8.
J Invest Dermatol ; 142(7): 1903-1911.e5, 2022 07.
Article in English | MEDLINE | ID: mdl-35031135

ABSTRACT

Pigment-producing melanocytes overcome frequent oxidative stress in their physiological role of protecting the skin against the deleterious effects of solar UV irradiation. This is accomplished by the activity of several endogenous antioxidant systems, including the thioredoxin antioxidant system, in which thioredoxin reductase 1 (TR1) plays an important part. To determine whether TR1 contributes to the redox regulation of melanocyte homeostasis, we have generated a selective melanocytic Txnrd1-knockout mouse model (Txnrd1mel‒/‒), which exhibits a depigmentation phenotype consisting of variable amelanotic ventral spotting and reduced pigmentation on the extremities (tail tip, ears, and paws). The antioxidant role of TR1 was further probed in the presence of acute neonatal UVB irradiation, which stimulates melanocyte activation and introduces a spike in oxidative stress in the skin microenvironment. Interestingly, we observed a significant reduction in overall melanocyte count and proliferation in the absence of TR1. Furthermore, melanocytes exhibited an elevated level of UV-induced DNA damage in the form of 8-oxo-2'-deoxyguanosine after acute UVB treatment. We also saw an engagement of compensatory antioxidant mechanisms through increased nuclear localization of transcription factor NRF2. Altogether, these data indicate that melanocytic TR1 positively regulates melanocyte homeostasis and pigmentation during development and protects against UVB-induced DNA damage and oxidative stress.


Subject(s)
Photobiology , Thioredoxin Reductase 1 , Animals , Antioxidants/pharmacology , Melanocytes/radiation effects , Mice , Pigmentation , Thioredoxin Reductase 1/genetics , Ultraviolet Rays
9.
Expert Rev Proteomics ; 18(11): 1009-1017, 2021 11.
Article in English | MEDLINE | ID: mdl-34739354

ABSTRACT

INTRODUCTION: COUP-TF INTERACTING PROTEIN 2 (CTIP2) is a crucial transcription factor exhibiting its control through coupled modulation of epigenetic modification and transcriptional regulation of key genes related to skin, immune, and nervous system development. Previous studies have validated the essential role of CTIP2 in skin development and maintenance, propagating its effects in epidermal permeability barrier (EPB) homeostasis, wound healing, inflammatory diseases, and epithelial cancers. Lipid metabolism dysregulation, on the other hand, has also established its independent emerging role over the years in normal skin development and various skin-associated ailments. This review focuses on the relatively unexplored connections between CTIP2-mediated control of lipid metabolism and alteration of EPB homeostasis, delayed wound healing, inflammatory diseases exacerbation, and cancer promotion and progression. AREAS COVERED: Here we have discussed the intricate interplay of various endogenous lipids and lipoproteins accompanying skin development and associated disease processes and the possible link to CTIP2-mediated regulation of lipid metabolism. EXPERT OPINION: Establishing the link between CTIP2 and lipid metabolism alterations in the context of skin morphogenesis and diverse types of skin diseases including cancer can help us identify novel targets for effective therapeutic intervention.


Subject(s)
Lipid Metabolism , Repressor Proteins , Epidermis/metabolism , Humans , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
10.
Front Oncol ; 11: 743667, 2021.
Article in English | MEDLINE | ID: mdl-34692525

ABSTRACT

Melanoma is the malignant transformation of melanocytes and represents the most lethal form of skin cancer. While early-stage melanoma localized to the skin can be cured with surgical excision, metastatic melanoma often requires a multi-pronged approach and even then can exhibit treatment resistance. Understanding the molecular mechanisms involved in the pathogenesis of melanoma could lead to novel diagnostic, prognostic, and therapeutic strategies to ultimately decrease morbidity and mortality. One emerging candidate that may have value as both a prognostic marker and in a therapeutic context is the vitamin D receptor (VDR). VDR is a nuclear steroid hormone receptor activated by 1,25 dihydroxy-vitamin D3 [calcitriol, 1,25(OH)2D3]. While 1,25 dihydroxy-vitamin D3 is typically thought of in relation to calcium metabolism, it also plays an important role in cell proliferation, differentiation, programmed-cell death as well as photoprotection. This review discusses the role of VDR in the crosstalk between keratinocytes and melanocytes during melanomagenesis and summarizes the clinical data regarding VDR polymorphisms, VDR as a prognostic marker, and potential uses of vitamin D and its analogs as an adjuvant treatment for melanoma.

11.
Methods Mol Biol ; 2155: 115-123, 2020.
Article in English | MEDLINE | ID: mdl-32474872

ABSTRACT

Wound healing process is the outcome of a series of actions and combined with collaborative process involving concerted efforts of multiple cell types. The dynamic series of events constituting each of these overlapping rather than discrete stages of wound healing increases its complexity and the necessity to understand it. The contrasting mechanisms of wound healing employed by mouse (via wound contraction) and humans (via reepithelialization) puts forth the need of a model closely mimicking human wound-healing and hence comes the applicability of the mouse excisional wound splinting model. Use of silicone-based splints has demonstrated their effectiveness in aptly resembling the human reepithelialization mediated wound healing by preventing contraction during healing. The rising popularity of nanofiber-based treatments for wound healing through sustained release of factors/molecules promoting wound closure can be potentially implemented in association with this model to determine its efficacy in wound management in a more humanized way.


Subject(s)
Nanofibers , Re-Epithelialization , Skin Physiological Phenomena , Skin/injuries , Splints , Wound Healing , Animals , Biomarkers , Contracture , Disease Models, Animal , Immunohistochemistry , Mice
13.
J Steroid Biochem Mol Biol ; 198: 105552, 2020 04.
Article in English | MEDLINE | ID: mdl-31783153

ABSTRACT

In humans and other primates, 1,25(OH)2vitamin D3 regulates the expression of the cathelicidin antimicrobial peptide (CAMP) gene via toll-like receptor (TLR) signaling that activates the vitamin D pathway. Mice and other mammals lack the vitamin D response element (VDRE) in their CAMP promoters. To elucidate the biological importance of this pathway, we generated transgenic mice that carry a genomic DNA fragment encompassing the entire human CAMP gene and crossed them with Camp knockout (KO) mice. We observed expression of the human transgene in various tissues and innate immune cells. However, in mouse CAMP transgenic macrophages, TLR activation in the presence of 25(OH)D3 did not induce expression of either CAMP or CYP27B1 as would normally occur in human macrophages, reinforcing important species differences in the actions of vitamin D. Transgenic mice did show increased resistance to colonization by Salmonella typhimurium in the gut. Furthermore, the human CAMP gene restored wound healing in the skin of Camp KO mice. Topical application of 1,25(OH)2vitamin D3 to the skin of CAMP transgenic mice induced CAMP expression and increased killing of Staphylococcus aureus in a wound infection model. Our model can help elucidate the biological importance of the vitamin D-cathelicidin pathway in both pathogenic and non-pathogenic states.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Gene Expression Regulation/drug effects , Staphylococcal Infections/prevention & control , Vitamin D/pharmacology , Animals , Cholecalciferol/pharmacology , Female , Gene Expression Profiling , Humans , Immunity, Innate , Lipopolysaccharides , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Phagocytes/metabolism , Phagocytosis , Salmonella typhimurium , Signal Transduction , Skin/drug effects , Staphylococcal Infections/immunology , Staphylococcus aureus/drug effects , Transgenes , Vitamin D Response Element , Cathelicidins
14.
Expert Rev Proteomics ; 16(8): 627-645, 2019 08.
Article in English | MEDLINE | ID: mdl-31322970

ABSTRACT

Introduction: Atopic dermatitis (AD) is a multifactorial ailment associated with barrier breach and intense systemic inflammation. Several studies over the years have shown the complex interplay of a large number of factors in governing the progression and outcome of AD. In addition to the diverse types of AD resulting due to variation in the intrinsic mechanisms giving rise to AD such as single nucleotide polymorphisms (SNPs), epigenetic alterations or transcriptional changes, extrinsic factors such as age, ancestry, ethnicity, immunological background of the subject, the interactions of the subject with environmental stimuli and existing microbiome in the periphery surrounding the subject account for further heterogeneity in the clinical manifestations of the disease. Areas covered: Here we have selectively discussed transcriptional regulation of genes associated with skin lipid metabolism in the context of AD. Transcriptional control and transcriptomic changes are just one face of this multifaceted disease known to affect humans and a detailed study concerning those will enable us to develop targeted therapies to deal with the disease. Expert opinion: Large-scale integration of different omics approaches (genomics, epigenomics, transcriptomics, lipidomics, proteomics, metabolomics, effect of exposome) will help identify the potential candidate gene(s) associated with the development of various endotypes of AD.


Subject(s)
Dermatitis, Atopic/genetics , Lipid Metabolism/physiology , Transcriptome/genetics , Humans , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide/genetics , Skin/metabolism , Skin/pathology
15.
Mol Carcinog ; 58(9): 1680-1690, 2019 09.
Article in English | MEDLINE | ID: mdl-31211467

ABSTRACT

Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas. We have conducted high-throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib-resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1's downstream effectors, 4E-BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib-resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug-resistant melanomas harboring BRAF V600E mutations.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Electron Transport Complex I/antagonists & inhibitors , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Rotenone/analogs & derivatives , Vemurafenib/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Signaling System/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Melanoma/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation/drug effects , Rotenone/pharmacology , Signal Transduction/drug effects
16.
Trends Mol Med ; 25(6): 551-562, 2019 06.
Article in English | MEDLINE | ID: mdl-31054869

ABSTRACT

The skin barrier keeps the 'inside in' and the 'outside out', forming a protective blanket against external insults. Epidermal lipids, such as ceramides, fatty acids (FAs), triglycerides, and cholesterol, are integral components driving the formation and maintenance of the epidermal permeability barrier (EPB). A breach in this lipid barrier sets the platform for the subsequent onset and progression of atopic dermatitis (AD). Such lipids are also important in the normal functioning of organisms, both plants and animals, and in diseases, including cancer. Given the doubling of the number of cases of AD in recent years and the chronic nature of this disorder, here we shed light on the multifaceted role of diverse types of lipid in mediating AD pathogenesis.


Subject(s)
Dermatitis, Atopic/etiology , Dermatitis, Atopic/metabolism , Disease Susceptibility , Epidermis/metabolism , Lipid Metabolism , Animals , Biomarkers , Ceramides/metabolism , Dermatitis, Atopic/pathology , Epidermis/immunology , Gene Expression Regulation , Humans , Metabolic Networks and Pathways , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Stem Cell Reports ; 12(4): 712-727, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30930246

ABSTRACT

Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.


Subject(s)
Endoplasmic Reticulum/metabolism , Glioblastoma/etiology , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Stearoyl-CoA Desaturase/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Susceptibility , Endoplasmic Reticulum Stress , Glioblastoma/pathology , Homeostasis , Humans , Lipid Metabolism , Mice , Neoplastic Stem Cells/pathology , Signal Transduction , Stearoyl-CoA Desaturase/genetics , Unfolded Protein Response
18.
Pigment Cell Melanoma Res ; 31(6): 728-735, 2018 11.
Article in English | MEDLINE | ID: mdl-30281213

ABSTRACT

In this perspective, we identify emerging frontiers in clinical and basic research of melanocyte biology and its associated biomedical disciplines. We describe challenges and opportunities in clinical and basic research of normal and diseased melanocytes that impact current approaches to research in melanoma and the dermatological sciences. We focus on four themes: (1) clinical melanoma research, (2) basic melanoma research, (3) clinical dermatology, and (4) basic pigment cell research, with the goal of outlining current highlights, challenges, and frontiers associated with pigmentation and melanocyte biology. Significantly, this document encapsulates important advances in melanocyte and melanoma research including emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, epidemiology, pigment biophysics and chemistry, and evolution.


Subject(s)
Biomedical Research , Melanocytes/pathology , Melanoma/pathology , Animals , Disease Models, Animal , Drug Resistance, Neoplasm , Humans , Melanoma/epidemiology , Melanoma/prevention & control , Melanoma/therapy , Pigmentation
19.
Nanomedicine (Lond) ; 13(12): 1417-1432, 2018 06.
Article in English | MEDLINE | ID: mdl-29972648

ABSTRACT

AIM: The aim of this study was to develop a nanofiber-based dressing capable of local sustained delivery of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and augmenting human CAMP induction. MATERIALS & METHODS: Nanofibrous wound dressings containing 1,25(OH)2D3 were successfully prepared by electrospinning, which were examined in vitro, in vivo and ex vivo. RESULTS: 1,25(OH)2D3 was successfully loaded into nanofibers with encapsulation efficiency larger than 90%. 1,25(OH)2D3 showed a sustained release from nanofibers over 4 weeks. Treatment of U937 and HaCaT cells with 1,25(OH)2D3-loaded poly(ϵ-caprolactone) nanofibers significantly induced hCAP18/LL37 expression in monocytes and keratinocytes, skin wounds of humanized transgenic mice and artificial wounds of human skin explants. CONCLUSION: 1,25(OH)2D3 containing nanofibrous dressings could enhance innate immunity by inducing antimicrobial peptide production.


Subject(s)
Anti-Infective Agents/administration & dosage , Antimicrobial Cationic Peptides/metabolism , Nanofibers/administration & dosage , Vitamin D/analogs & derivatives , Animals , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bandages/microbiology , Cell Line , Humans , Keratinocytes/drug effects , Keratinocytes/microbiology , Mice , Mice, Transgenic , Monocytes/drug effects , Nanofibers/chemistry , Vitamin D/administration & dosage , Vitamin D/chemistry , Wound Closure Techniques
20.
Front Pharmacol ; 9: 477, 2018.
Article in English | MEDLINE | ID: mdl-29867483

ABSTRACT

Exposure to ultraviolet B (UVB) irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam (Limnanthes alba) glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC) and 3-methoxyphenyl acetonitrile (MPACN), for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs) and 3D human skin reconstructed in vitro (EpiDermTM FT-400) to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds' efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP) expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs) and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET). These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...