Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 276: 126221, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776768

ABSTRACT

Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.


Subject(s)
Pharyngitis , Saliva , Streptococcus pyogenes , Humans , Streptococcus pyogenes/isolation & purification , Saliva/microbiology , Pharyngitis/microbiology , Pharyngitis/diagnosis , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Adult , Real-Time Polymerase Chain Reaction/methods
2.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Article in English | MEDLINE | ID: mdl-35104861

ABSTRACT

Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.


Subject(s)
Bacteria , Biofilms , Bacteria/metabolism , Bacterial Proteins/metabolism , Humans , Polysaccharides/metabolism , Streptococcus/metabolism
3.
Antibiotics (Basel) ; 9(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158121

ABSTRACT

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Antibiotic treatment failure rates of 20-40% have been observed. The role host cell glycans play in GAS biofilm formation in the context of GAS pharyngitis and subsequent antibiotic treatment failure has not been previously investigated. GAS serotype M12 GAS biofilms were assessed for biofilm formation on Detroit 562 pharyngeal cell monolayers following enzymatic removal of all N-linked glycans from pharyngeal cells with PNGase F. Removal of N-linked glycans resulted in an increase in biofilm biomass compared to untreated controls. Further investigation into the removal of terminal mannose and sialic acid residues with α1-6 mannosidase and the broad specificity sialidase (Sialidase A) also found that biofilm biomass increased significantly when compared to untreated controls. Increases in biofilm biomass were associated with increased production of extracellular polymeric substances (EPS). Furthermore, it was found that M12 GAS biofilms grown on untreated pharyngeal monolayers exhibited a 2500-fold increase in penicillin tolerance compared to planktonic GAS. Pre-treatment of monolayers with exoglycosidases resulted in a further doubling of penicillin tolerance in resultant biofilms. Lastly, an additional eight GAS emm-types were assessed for biofilm formation in response to terminal mannose and sialic acid residue removal. As seen for M12, biofilm biomass on monolayers increased following removal of terminal mannose and sialic acid residues. Collectively, these data demonstrate that pharyngeal cell surface glycan structures directly impact GAS biofilm formation in a strain and glycan specific fashion.

SELECTION OF CITATIONS
SEARCH DETAIL
...