Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 286(9): 7641-7, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21127047

ABSTRACT

Although histone deacetylases (HDACs) are normally considered as co-repressors, HDAC1 has been identified as a coactivator for the glucocorticoid receptor (GR) (Qiu, Y., Zhao, Y., Becker, M., John, S., Parekh, B. S., Huang, S., Hendarwanto, A., Martinez, E. D., Chen, Y., Lu, H., Adkins, N. L., Stavreva, D. A., Wiench, M., Georgel, P. T., Schiltz, R. L., and Hager, G. L. (2006) Mol. Cell 22, 669-679). Furthermore, HDAC1 is acetylated, and its acetylation level is linked to the transcription state of a GR-induced promoter (mouse mammary tumor virus). GR is also known to interact dynamically with regulatory elements in living cells (McNally, J. G., Müller, W. G., Walker, D., Wolford, R., and Hager, G. L. (2000) Science 287, 1262-1265). However, HDAC1 dynamics have never been studied. We demonstrate here that HDAC1 also exchanges rapidly with promoter chromatin, and its exchange rate is significantly modulated during the development of promoter activity. Prior to induction, HDAC1 mobility was retarded compared with the exchange rate for GR. HDAC1 mobility then increased substantially, coordinately with the peak of promoter activity. At later time points, promoter activity was severely repressed, and HDAC1 mobility returned to the rate of exchange observed for the uninduced promoter. Thus, alterations of the exchange rates of HDAC1 at the promoter are correlated with the activity state of the promoter. These findings provide direct evidence for the functional role of highly mobile transcription factor complexes in transcription regulation.


Subject(s)
Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Promoter Regions, Genetic/physiology , Receptors, Glucocorticoid/metabolism , Transcriptional Activation/physiology , Acetylation , Adenocarcinoma , Animals , Cell Line, Tumor , Enzyme Activation/physiology , Fluorescence Recovery After Photobleaching , Mice , Transcription Factors/metabolism
2.
PLoS One ; 4(9): e7163, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19787057

ABSTRACT

NF-kappaB is a prototypic stress-responsive transcription factor that acts within a complex regulatory network. The signaling dynamics of endogenous NF-kappaB in single cells remain poorly understood. To examine real time dynamics in living cells, we monitored NF-kappaB activities at multiple timescales using GFP-p65 knock-in mouse embryonic fibroblasts. Oscillations in NF-kappaB were sustained in most cells, with several cycles of transient nuclear translocation after TNF-alpha stimulation. Mathematical modeling suggests that NF-kappaB oscillations are selected over other non-oscillatory dynamics by fine-tuning the relative strengths of feedback loops like IkappaBalpha. The ability of NF-kappaB to scan and interact with the genome in vivo remained remarkably constant from early to late cycles, as observed by fluorescence recovery after photobleaching (FRAP). Perturbation of long-term NF-kappaB oscillations interfered with its short-term interaction with chromatin and balanced transcriptional output, as predicted by the mathematical model. We propose that negative feedback loops do not simply terminate signaling, but rather promote oscillations of NF-kappaB in the nucleus, and these oscillations are functionally advantageous.


Subject(s)
Gene Expression Profiling , Genome , NF-kappa B/metabolism , Oscillometry/methods , Animals , Cell Nucleus/metabolism , Chromatin/metabolism , Cycloheximide/pharmacology , Cytoplasm/metabolism , Feedback, Physiological , Fibroblasts/metabolism , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/metabolism , Mice , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL