Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(31): 5939-49, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25050911

ABSTRACT

The photochemistry of peroxyformic acid (PFA), a molecule of atmospheric interest exhibiting internal hydrogen bonding, is examined by exciting the molecule at 355 nm and detecting the nascent OH fragments using laser-induced fluorescence. The OH radicals are found to be formed in their ground electronic state with the vast majority of available energy appearing in fragment translation. The OH fragments are vibrationally cold (v" = 0) with only modest rotational excitation. The average rotational energy is determined to be 0.35 kcal/mol. Further, the degree of OH rotational excitation from PFA is found to be significantly less than that arising from the dissociation of H2O2 as well as other hydroperoxides over the same wavelength. Ab initio calculation at the EOM-CCSD level is used to investigate the first few electronic excited states of PFA. Differences in the computed torsional potential between PFA and H2O2 help rationalize the observed variation in their respective OH fragment rotational excitation. The calculations also establish that the electronic excited state of PFA accessed in the near UV is of (1)A" symmetry and involves a σ*(O-O) ← n(O) excitation. Additionally, the UV absorption cross section of PFA at 355 and 282 nm is estimated by comparing the yield of OH from PFA at these wavelengths to that from hydrogen peroxide for which the absorption cross sections is known.


Subject(s)
Formates/chemistry , Photolysis , Ultraviolet Rays , Computer Simulation , Hydrogen Bonding , Hydrogen Peroxide/chemistry , Models, Chemical , Rotation , Spectrum Analysis , Vibration
2.
J Chem Phys ; 134(19): 194313, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21599065

ABSTRACT

The photodissociation dynamics of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) and 2-(bromomethyl) hexafluoro-2-propanol (BMHFP) have been studied at 234 nm, and the C-Br bond dissociation investigated using resonance-enhanced multiphoton ionization coupled with time-of-flight mass spectrometer (REMPI-TOFMS). Br formation is a primary process and occurs on a repulsive surface involving the C-Br bond of BTFP and BMHFP. Polarization dependent time-of-flight profiles were measured, and the translational energy distributions and recoil anisotropy parameters extracted using forward convolution fits. A strong polarization dependence of time-of-flight profiles suggest anisotropic distributions of the Br((2)P(3/2)) and Br((2)P(1/2)) fragments with anisotropy parameter, ß, of respectively 0.5 ± 0.2 and 1.2 ± 0.2 for BTFP, and 0.4 ± 0.1 and 1.0 ± 0.3 for BMHFP. The measured velocity distributions consist of a single velocity component. The average translational energies for the Br((2)P(3/2)) and Br((2)P(1/2)) channels are 9.2 ± 1.0 and 7.4 ± 0.9 kcal/mol for BTFP, and 15.4 ± 1.8 and 15.1 ± 2.0 kcal/mol for BMHFP. The relative quantum yields of Br((2)P(3/2)) and Br((2)P(1/2)), which are 0.70 ± 0.14 and 0.30 ± 0.06 in BTFP and 0.81 ± 0.16 and 0.19 ± 0.04 in BMHFP, indicate that the yield of the former is predominant. The measured anisotropy parameters for the Br((2)P(3/2)) and Br((2)P(1/2)) channels suggest that the former channel has almost equal contributions from both the parallel and the perpendicular transitions, whereas the latter channel has a significant contribution from a parallel transition. Non-adiabatic curve crossing plays an important role in the C-Br bond dissociation of both BTFP and BMHFP. The estimated curve crossing probabilities suggest a greater value in BTFP, which explains a greater observed value of the relative quantum yield of Br((2)P(1/2)) in this case.

3.
J Phys Chem A ; 114(29): 7709-15, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20593819

ABSTRACT

Kinetics of reaction of OH radical with morpholine, a heterocyclic molecule with both oxygen and nitrogen atoms, has been investigated using laser photolysis-laser-induced fluorescence technique, in the temperature range of 298-363 K. The rate constant at room temperature (k(298)) is (8.0 +/- 0.1) x 10(-11) molecule(-1) cm(3) s(-1). The rate constant decreases with temperature in the range studied, with the approximate dependence given by k(T) = (1.1 +/- 0.1) x 10(-11) exp[(590 +/- 20)/T] cm(3) molecule(-1) s(-1). The rate constants are high compared with those of similar heterocyclic molecules with oxygen atom but comparable to those reported for aliphatic amines. Ab initio molecular orbital calculations show that prereactive complexes, 5-7 kcal mol(-1) lower in energy as compared with the reactants, are formed because of hydrogen bond interaction between OH and the N/O atom of morpholine. The stability of the complex involving the nitrogen atom is found to be more than that involving the oxygen atom. The optimized transition-state structures and energies for the different pathways of hydrogen abstraction from these prereactive complexes explain the observation of negative activation energy.

4.
J Phys Chem A ; 113(30): 8462-70, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19588917

ABSTRACT

Photodissociation of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) has been investigated at 193 nm, employing the laser photolysis laser-induced fluorescence technique. The nascent OH product was detected state selectively, and the energy released into translation, rotation, and vibration of the photoproducts has been measured. OH is produced mostly vibrationally cold, with a moderate rotational excitation, which is characterized by a rotational temperature of 640 +/- 140 K. However, an appreciable amount of the available energy of 36.1 kcal mol(-1) is released into translation of OH (15.1 kcal mol(-1)). OH product has no preference for a specific spin-orbit state, Pi(3/2) or Pi(1/2). However, between two Lambda-doublet states, Pi(+) and Pi(-), the OH product has a preference for the former by a factor of 2. A mechanism of OH formation from BTFP on excitation at 193 nm is proposed, which involves first the direct C-Br bond dissociation from a repulsive state (n(Br)sigma*(C-Br)) as a primary process. The primary product, F(3)C-CH(OH)-CH(2), with sufficient internal energy undergoes spontaneous C-OH bond dissociation, through a loose transition state. The formation rate of OH is calculated to be 5.8 x 10(6) s(-1) using Rice-Ramsperger-Kassel-Marcus unimolecular rate theory. Experimental results have been supported by theoretical calculations, and energies of various low-energy dissociation channels of the primary product, F(3)C-CH(OH)-CH(2), have been calculated.


Subject(s)
Hydroxyl Radical/chemistry , Lasers , Propanols/chemistry , Fluorescence , Photochemistry , Photolysis
5.
J Phys Chem A ; 112(49): 12572-81, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19053556

ABSTRACT

Dynamics of formation of electronically excited NO2 and formation of OH fragment, during photo dissociation of 2-nitropropane (NP) and 2-methyl-2-nitropropane (MNP), were investigated at 193 and 248 nm. The radiative lifetime of the electronically excited NO2 fragment, observed at 193 nm, was measured to be 1.2 ( 0.1 micros and the rate coefficient of quenching of its emission by MNP was measured as (2.7 ( 0.1) x 10(-10) molecule(-1) cm3 s(-1). Formation of the ground electronic state of OH was confirmed in both molecules. State selective laser induced fluorescence technique was used to detect the nascent OH (X 2Pi, v'', J'') fragments in different ro-vibrational states, and to obtain information on energy partitioning. Though MNP and NP differ in the types of the available H atoms, the dynamics of OH formation is found to be the same in both. The relative population in different rotational states does not follow Boltzmann equilibrium distribution in both the molecules at 193 and 248 nm. The translational energies of the OH fragments, calculated from the Doppler width, are 21.2 ( 7.2 and 25.0 ( 2.5 kcal mol-1 for NP at 248 and 193 nm, respectively. The translational energies of the OH fragments, in the case of MNP, are found to be lower, 17.5 ( 4.1 and 22.0 ( 3.2 kcal mol-1,respectively, at 248 nm 193 nm. These results are compared with the earlier reports on photodissociation of nitromethane (NM), nitroethane (NE), and other nitroalkanes. All possible dissociation pathways of these molecules--NM, NE, NP, and MNPs leading to the formation of the OH fragment were investigated computationally, with geometry optimization at the B3LYP/6-311+G(d,p) level and energy calculation at the MP4(SDQ)/6-311+G (d,p) level. The results suggest that in NM, OH is formed after isomerization to CH2N(OH)O, whereas in all other cases OH is formed from HONO, a primary product of molecular elimination of nitroalkanes, formed with sufficient internal energy.

6.
J Chem Phys ; 128(2): 024309, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18205452

ABSTRACT

Butadiene monoxide (BMO) undergoes the S(0)-->S(1) transition, involving the excitation of both pi and n electrons to pi(*) orbital, at 193 nm. After relaxing to the ground electronic state via internal conversion, BMO molecules undergo intramolecular rearrangement and subsequently dissociate to form unexpected OH radicals, which were detected state selectively by laser-induced fluorescence technique, and the energy state distribution was measured. OH is produced vibrationally cold, OH(nu(")=0,J(")), with the rotational population characterized by a rotational temperature of 456+/-70 K. The major portion (approximately 60%) of the available energy is partitioned into internal degrees of the photofragments, namely, vibration and rotation. A considerable portion (25%-35%) also goes to the relative translation of the products. The Lambda doublet and spin-orbit ratios of OH were measured to be nearly unity, implying statistical distribution of these states and, hence, no preference for any of the Lambda doublet (Lambda+ and Lambda-) and spin-orbit (Pi(3/2) and Pi(1/2)) states. Formation time of the nascent OH radical was measured to be <100 ns. Different products, such as crotonaldehyde and methyl vinyl ketone, were detected by gas chromatography as stable products of photodissociation. A reaction mechanism for the formation of all these photoproducts, transient and stable, is proposed. The multiple pathways by which these products can be formed have been theoretically optimized, and energies have been calculated. Absorption cross section of BMO at 193 nm was measured, and quantum yield of OH generation channel was also determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...