Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893580

ABSTRACT

In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.

2.
Inorg Chem ; 59(18): 13598-13606, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32877188

ABSTRACT

The porous Ba12(BO3)66+ framework of the so-called "antizeolite" borates with channels along the c axis is capable of accommodating various guest anionic groups, e.g. [BO3]3-, [F2]2-, [F4]4-, and [(Li,Na)F4]3-. Taking as an example the Ba12(BO3)6[BO3][LiF4] crystal, we put forward the argument that the optical properties of "antizeolite" borates are strongly influenced by the degree of channel packing with anionic groups and, correspondingly, by the conjugated intrinsic defects. With the use of optical, electron-spin resonance, Raman spectroscopy, and ab initio calculations, it was shown that intrinsic defects largely impact the absorption of light in the visible and UV regions (the color of the bulk crystals can change from colorless to dark brown), absorption-edge position, dichroism, and other optical properties. The change in the optical absorption in the visible range is caused by the appearance of new states in the electronic structure inside the band gap, which are associated mainly with the presence of single and double F centers-fluorine vacancies that capture electrons-in [□F4]4-, [F2]2-, and [LiF4]3- groups. The formation of F centers in the [F2]2- group is the most energetically favorable. It has been found that Ba12(BO3)6[BO3][LiF4] crystals are optically active gyrotropic with an isotropic point at 499 nm at 300 K and are of interest for practical application as narrow-band light filters.

3.
RSC Adv ; 9(7): 3577-3581, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-35518092

ABSTRACT

We carried out ab initio calculations on the crystal structure prediction and determination of P-T diagrams within the quasi-harmonic approximation for Fe7N3 and Fe7C3. Two new isostructural phases Fe7N3-C2/m and Fe7C3-C2/m which are dynamically and thermodynamically stable under the Earth's core conditions were predicted. The Fe7C3-C2/m phase stabilizes preferentially to the known h-Fe7C3 at 253-344 GPa in the temperature range of 0-5000 K, and the Fe7N3-C2/m stabilizes preferentially relative to the ß-Fe7N3 - at ∼305 GPa over the entire temperature range. This indicate that carbon and nitrogen can mutually coexist and replace each other in the Earth's and other planetary cores similarly to low pressure phases of the same compounds.

4.
Phys Chem Chem Phys ; 17(9): 6217-21, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25655842

ABSTRACT

Experimental and theoretical investigations were performed to investigate the effect of water on optical properties of nanoceria as a function of Ce(3+) concentration. Theoretical studies based on density functional plane-wave calculations reveal that the indirect optical transitions in bare ceria nanoparticles are red-shifted with an increase in the concentration of Ce(3+). However, ceria nanoparticles model with adsorbed water molecules show a blue shift in the indirect optical spectra under identical conditions. Direct optical transitions are almost independent of Ce(3+) concentration but show a pronounced blue shift in the aqueous environment relative to the bare nanoparticles. The theoretical study is consistent with our experimental observation in difference of shift behaviour in bare and aqueous suspended ceria nanoparticles. This change from red- to blue-shift in indirect optical transitions is associated with the polarization effect of water molecules on f-electron states.


Subject(s)
Cerium/chemistry , Metal Nanoparticles , Optics and Photonics , Water/chemistry , Models, Chemical
5.
J Chem Phys ; 140(16): 164508, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24784288

ABSTRACT

In a wide range of P-T conditions, such fundamental characteristics as compressibility and thermoelastic properties remain unknown for most classes of organic compounds. Here we attempt to clarify this issue by the example of naphthalene as a model representative of polycyclic aromatic hydrocarbons (PAHs). The elastic behavior of solid naphthalene was studied by in situ synchrotron powder X-ray diffraction up to 13 GPa and 773 K and first principles computations to 20 GPa and 773 K. Fitting of the P-V experimental data to Vinet equation of state yielded T 0 = 8.4(3) GPa and T' = 7.2 (3) at V0 = 361 Å(3), whereas the thermal expansion coefficient was found to be extremely low at P > 3 GPa (about 10(-5) K(-1)), in agreement with theoretical estimation. Such a diminishing of thermal effects with the pressure increase clearly demonstrates a specific feature of the high-pressure behavior of molecular crystals like PAHs, associated with a low energy of intermolecular interactions.

6.
J Phys Chem Lett ; 5(16): 2823-9, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-26278085

ABSTRACT

Charge transfer dynamics at the interface of supported metal nanocluster and liquid water by GGA+U calculations combined with density matrix formalism is considered. The Ru10 cluster introduces new states into the band gap of TiO2 surface, narrows the band gap of TiO2, and enhances the absorption strength. The H2O adsorption significantly enhances the intensity of photon absorption, which is due to the formation of Ti-O(water) and Ru-O(water) bonds at the interfaces. The Ru10 cluster promotes the dissociation of water, facilitates charge transfer, and increases the relaxation rates of holes and electrons. We expect that our results are helpful in understanding basic processes contributing to photoelectrochemical water splitting.

7.
J Mol Model ; 16(10): 1617-23, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20195666

ABSTRACT

We report plane wave basis density functional theory (DFT) calculations of the oxygen vacancies formation energy in nanocrystalline CeO2-x in comparison with corresponding results for bulk and (111) CeO2 surface. Effects of strong electronic correlation of Ce4f states are taken into account through the use of an effective on-site Coulomb repulsive interaction within DFT+U approach. Different combinations of exchange-correlation functionals and corresponding U values reported in the literature are tested and the obtained results compared with experimental data. We found that both absolute values and trends in oxygen vacancy formation energy depend on the value of U and associated with degree of localization of Ce4f states. Effect of oxygen vacancy and geometry optimization method on spatial spin distribution in model ceria nanoparticles is also discussed.


Subject(s)
Cerium/chemistry , Nanoparticles/chemistry , Oxygen/chemistry , Models, Molecular
8.
Langmuir ; 26(10): 7188-98, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20131920

ABSTRACT

Long-term stability and surface properties of colloidal nanoparticles have significance in many applications. Here, surface charge modified hydrated cerium oxide nanoparticles (CNPs, also known as nanoceria) are synthesized, and their dynamic ion exchange interactions with the surrounding medium are investigated in detail. Time-dependent zeta (zeta) potential (ZP) variations of CNPs are demonstrated as a useful characteristic for optimizing their surface properties. The surface charge reversal of CNPs observed with respect to time, concentration, temperature, and doping is correlated to the surface modification of CNPs in aqueous solution and the ion exchange reaction between the surface protons (H(+)) and the neighboring hydroxyls ions (OH(-)). Using density functional theory (DFT) calculations, we have demonstrated that the adsorption of H(+) ions on the CNP surface is kinetically more favorable while the adsorption of OH(-) ions on CNPs is thermodynamically more favorable. The importance of selecting CNPs with appropriate surface charges and the implications of dynamic surface charge variations are exemplified with applications in microelectronics and biomedical.


Subject(s)
Cerium/chemistry , Computer Simulation , Models, Chemical , Nanoparticles/chemistry , Adsorption , Colloids/chemical synthesis , Colloids/chemistry , Hydroxides/chemistry , Ions/chemistry , Protons , Surface Properties , Thermodynamics , Water/chemistry
9.
J Chem Phys ; 131(4): 044106, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19655836

ABSTRACT

We report Gaussian basis set density functional theory (DFT) calculations of the structure and spectra of several colloidal quantum dots (QDs) with a (CdSe)(n) core (n=6,15,17), that are either passivated by trimethylphosphine oxide ligands, or unpassivated and oxidized. From the ground state geometry optimization results we conclude that trimethylphosphine oxide ligands preserve the wurtzite structure of the QDs. Evaporation of the ligands may lead to surface reconstruction. We found that the number of two-coordinated atoms on the nanoparticle's surface is the critical parameter defining the optical absorption properties. For (CdSe)(15) wurtzite-derived QD this number is maximal among all considered QDs and the optical absorption spectrum is strongly redshifted compared to QDs with threefold coordinated surface atoms. According to the time-dependent DFT results, surface reconstruction is accompanied by a significant decrease in the linear absorption. Oxidation of QDs destroys the perfection of the QD surface, increases the number of two-coordinated atoms and results in the appearance of an infrared absorption peak close to 700 nm. The vacant orbitals responsible for this near infrared transition have strong Se-O antibonding character. Conclusions of this study may be used in optimization of engineered nanoparticles for photodetectors and photovoltaic devices.

10.
ACS Nano ; 3(5): 1203-11, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19368374

ABSTRACT

Nanoparticles have shown tremendous potential for effective drug delivery due to their tiny size and cell membrane penetration capabilities. Cellular targeting with nanoparticles is often achieved by surface modifications followed by ligand conjugation. However, the efficiency of the nanoparticles reaching the target cells and getting internalized depends on the stability of targeting ligands and the chemical nature of the ligand nanoparticle binding. Recent advancements in nanobiomaterials research have proven the superoxide dismutase (SOD) mimetic activity of cerium oxide nanoparticles (CNPs) in protecting cells against oxidative stress. Due to their excellent biocompatibility, CNPs can be used as a potential drug carrier that can transport and release drugs to the malignant sites. Here we combine single molecule force spectroscopy (SMFS) and density functional theory (DFT) simulations to understand the interaction between transferrin, a ligand protein overexpressed in cancer cells, and CNPs. SMFS studies demonstrate an increase in the transferrin adhesion to the nanoparticles' surface with an increase in positive zeta potential of CNPs. Binding energy values obtained from DFT calculations predict an increase in bond strength between the transferrin and CNPs upon surface protonation and charge modification. Transferrin-conjugated CNPs were tested for their binding stability and preferential cellular uptake efficiency by incubating them with human lung cancer cells (A549) and normal embryo lung cells (WI-38). The results demonstrate the importance of tuning the surface properties of nanoparticles for better ligand adsorption and cellular uptake.


Subject(s)
Cerium/chemistry , Crystallization/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Ligands , Macromolecular Substances/chemistry , Molecular Conformation , Nanostructures/therapeutic use , Particle Size , Protons , Surface Properties
11.
J Chem Phys ; 125(23): 234702, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17190565

ABSTRACT

As it has been found experimentally [K. Clays and B. Coe, Chem. Mater. 15, 642 (2003); B. J. Coe et al., 126, 10418 (2004)], elongation of the conjugation path length and N-arylation in stilbazolium chromophores both lead to substantial enhancement of the molecular optical nonlinearities. In the present contribution the authors perform a quantum chemical analysis of the excited state properties and quadratic nonlinear optical responses of a series of this type of dyes. Nonlinear optical responses are estimated by both finite-field and two-state model approaches that demonstrate an excellent qualitative mutual agreement. Time-dependent density functional theory calculations on the isolated cations predict redshift in the energy of the intramolecular charge transfer transition that is overestimated for cations with the longer conjugation path length. At the same time, in comparison with the Stark spectroscopy measurements the differences between the excited and ground state dipole moments are grossly underestimated for all compounds. The inclusion of solvent effect by polarizable continuum model affords a better agreement with experiment for these quantities. The authors' calculations demonstrate the crucial dependence of the electronic excitation properties on the way of the investigated compound geometry optimization. The origin of such dependence is discussed.

12.
J Chem Theory Comput ; 2(5): 1325-34, 2006 Sep.
Article in English | MEDLINE | ID: mdl-26626840

ABSTRACT

First principles calculations were used to study the electronic excitation energies (E), transition dipole moments (µ), and difference of dipole moments between ground and excited states (Δµ) for low-lying singlets of the series of ruthenium(II) ammine complexes. Both cases of the gas phase and the acetonitrile solution were investigated in order to explain the discrepancy between the recent experimental and theoretical results and to develop the optimal way of estimation for the first static hyperpolarizability in the framework of a two-state model introduced by Oudar and Chemla. The present calculations reveal that the effect of solvent on the electronic properties of investigated compounds is not only the change of the excitation energy but also the increasing of ground-state molecular polarization and intensification of metal-to-ligand intramolecular charge transfer for electronic excitations. These effects lead to increasing of the values of Δµ and ground-state dipole moment µg in solution as compared with the gas-phase ones. The proposed theoretical approach gives good agreement with experiment and allows one to apply it for designing a new perspective nonlinear optical active organometallics.

SELECTION OF CITATIONS
SEARCH DETAIL
...