Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-456077

ABSTRACT

To understand the nature of the antibody response to SARS-CoV-2 vaccination, we analyzed at single cell level the B cell responses of five naive and five convalescent people immunized with the BNT162b2 mRNA vaccine. Convalescents had higher frequency of spike protein specific memory B cells and by cell sorting delivered 3,532 B cells, compared with 2,352 from naive people. Of these, 944 from naive and 2,299 from convalescents produced monoclonal antibodies against the spike protein and 411 of them neutralized the original Wuhan SARS-CoV-2 virus. More than 75% of the monoclonal antibodies from naive people lost their neutralization activity against the B.1.351 (beta) and B.1.1.248 (gamma) variants while this happened only for 61% of those from convalescents. The overall loss of neutralization was lower for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants, however it was always significantly higher in those of naive people. In part this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in convalescents and generated potent and broadly neutralizing antibodies. Overall, vaccination of seropositive people increases the frequency of B cells encoding antibodies with high potency and that are not susceptible to escape by any of the four variants of concern. Our data suggest that people that are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control SARS-CoV-2 emerging variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21261441

ABSTRACT

BackgroundThe emerging threat represented by SARS-CoV-2 variants, demands the development of therapies for better clinical management of COVID-19. MAD0004J08 is an extremely potent Fc-engineered monoclonal antibody (mAb) able to neutralise in vitro all current SARS-CoV-2 variants of concern (VoCs). This ongoing study, evaluates safety, pharmacokinetics and SARS-CoV-2 sera neutralization effect of MAD0004J08 when administered as single dose intramuscularly in healthy adults. MethodWe conducted a dose escalation study with sequential enrolment of three cohorts, each with an increasing dose level of MAD0004J08 (48mg, 100mg and 400mg). Within each cohort, 10 young healthy adults were randomized with 4:1 ratio to a single intramuscular (i.m.) injection of MAD0004J08 or placebo. The primary endpoint is the proportion of subjects with severe and/or serious treatment emergent adverse events (TEAEs) within 7 days post-treatment. Secondary endpoints reported in this paper are the proportion of subjects with solicited TEAEs up 7 days post dosing, MAD0004J08 serum concentrations and neutralising activity versus the original SARS-COV-2 Wuhan virus at different timepoints post-dosing. As post-hoc analyses, we compared the sera neutralising titres of subjects who received MAD0004J08 with those of people that had received the COVID-19 BNT162b2 mRNA vaccine in the previous sixty days (n=10) and COVID-19 convalescent patients (n=20), and assessed serum neutralisation activity against the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) SARS-CoV-2 variants of concern. FindingsA total of 30 subjects, 10 per cohort, were enrolled and randomized. Data up to 30 days were available and analysed in this report. No severe TEAEs were reported in any of the cohorts in the 7 days post-treatment. MAD0004J08 was detected in the sera of treated subjects within few hours post-administration and reached almost maximal levels on day 8. The geometric mean neutralising titres (GMT) assessed against the original Wuhan virus peaked on day 8 and ranged 226 - 905, 905 - 2,560, and 1,280 - 5,120 for cohort 1, 2 and 3 respectively. The sera neutralising GMT in MAD0004J08 treated subjects in all the three cohorts were found to be 1{middle dot}5-54{middle dot}5-fold higher compared to sera from convalescent patients and 1{middle dot}83- 76{middle dot}4-fold higher compared to sera from COVID-19 vaccinees. Finally, GMT in MAD0004J08 treated subjects showed high neutralising titres versus the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) SARS-CoV-2 VoCs. InterpretationA single dose administration of MAD0004J08 via i.m. route is safe and well tolerated and results in a rapid systemic distribution of the MAD0004J08 and sera neutralising titres higher than COVID-19 convalescent and vaccinated subjects. A single dose administration of MAD0004J08 is also sufficient to effectively neutralise major SARS-CoV-2 variants of concern. Based on these results, a Phase 2-3 trial is ongoing to further assess the safety, dosage, and efficacy of MAD0004J08 in asymptomatic or mild-moderate symptomatic COVID-19 patients. FundingEU Malaria Fund, Ministero dello Sviluppo Economico, Ministero della Salute, Regione Toscana, Toscana Life Sciences Sviluppo and European Research Council. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PUBMED, MEDLINE and MedRxiv for clinical trials, meta-analyses and randomized controlled trials evaluating the antibody neutralization titres vs. different SARS-CoV-2 variants of concern obtained from subjects who received monoclonal antibodies for the treatment of COVID-19 using the following search terms: ("COVID-19" OR "SARS-CoV-2") AND ("monoclonal antibody" OR "neutralising antibody") AND ("variants" OR "variants of concern"). No relevant studies were identified. Added value of this studyThis is the first human study assessing safety, PK and neutralising potential of MAD0004J08, a monoclonal antibody against SARS-CoV-2 wild type Wuhan virus and variants of concern, administered intramuscularly at low dosages (48, 100 and 400 mg). MAD0004J08 showed to be safe and well tolerated in the tested dose range. Anti-spike antibodies were detected in the sera of tested SARS-CoV-2 negative healthy adults few hours post-injection. In addition, the sera obtained from MAD0004J08treated subjects, showed to have high neutralisation titres against the Wuhan virus, the B.1.1.7 (alpha), B.1.351 (beta) and B.1.1.248 (gamma) variants of concern. Implications of all the available evidenceA potent monoclonal antibody such as MAD0004J08, capable of neutralising multiple variants of concern of SARS-CoV-2 rapidly and long lastingly when given as a single intramuscular injection. The antibody, presently tested in a phase 2-3 efficacy trial, can be a major advancement in the prophylaxis and clinical management of COVID-19, because of its broad spectrum, ease of use in non-hospital settings and economic sustainability.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-424451

ABSTRACT

To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. One Sentence SummaryThree mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-243717

ABSTRACT

A newly identified coronavirus, named SARS-CoV-2, emerged in December 2019 in Hubei Province, China, and quickly spread throughout the world; so far, it has caused more than 18 million cases of disease and 700,000 deaths. The diagnosis of SARS-CoV-2 infection is currently based on the detection of viral RNA in nasopharyngeal swabs by means of molecular-based assays, such as real-time RT-PCR. Furthermore, serological assays aimed at detecting different classes of antibodies constitute the best surveillance strategy for gathering information on the humoral immune response to infection and the spread of the virus through the population, in order to evaluate the immunogenicity of novel future vaccines and medicines for the treatment and prevention of COVID-19 disease. The aim of this study was to determine SARS-CoV-2-specific antibodies in human serum samples by means of different commercial and in-house ELISA kits, in order to evaluate and compare their results first with one another and then with those yielded by functional assays using wild-type virus. It is important to know the level of SARS-CoV-2-specific IgM, IgG and IgA antibodies in order to predict population immunity and possible cross-reactivity with other coronaviruses and to identify potentially infectious subjects. In addition, in a small sub-group of samples, we performed a subtyping Immunoglobulin G ELISA. Our data showed an excellent statistical correlation between the neutralization titer and the IgG, IgM and IgA ELISA response against the receptor-binding domain of the spike protein, confirming that antibodies against this portion of the virus spike protein are highly neutralizing and that the ELISA Receptor-Binding Domain-based assay can be used as a valid surrogate for the neutralization assay in laboratories which do not have Biosecurity level-3 facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...