Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RNA Biol ; 18(sup1): 148-156, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34541994

ABSTRACT

Recently published transcriptomic data of the SARS-CoV-2 coronavirus show that there is a large variation in the frequency and steady state levels of subgenomic mRNA sequences. This variation is derived from discontinuous subgenomic RNA synthesis, where the polymerase switches template from a 3' proximal genome body sequence to a 5' untranslated leader sequence. This leads to a fusion between the common 5' leader sequence and a 3' proximal body sequence in the RNA product. This process revolves around a common core sequence (CS) that is present at both the template sites that make up the fusion junction. Base-pairing between the leader CS and the nascent complementary minus strand body CS, and flanking regions (together called the transcription regulating sequence, TRS) is vital for this template switching event. However, various factors can influence the site of template switching within the same TRS duplex. Here, we model the duplexes formed between the leader and complementary body TRS regions, hypothesizing the role of the stability of the TRS duplex in determining the major sites of template switching for the most abundant mRNAs. We indicate that the stability of secondary structures and the speed of transcription play key roles in determining the probability of template switching in the production of subgenomic RNAs. We speculate on the effect of reported variant nucleotide substitutions on our models.


Subject(s)
Gene Expression Regulation, Viral , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Transcription, Genetic , Mutation , Nucleic Acid Conformation , RNA Stability , SARS-CoV-2/classification , SARS-CoV-2/genetics
2.
Br Med Bull ; 136(1): 4-20, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33010155

ABSTRACT

BACKGROUND: RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA: Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT: Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY: Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS: Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH: Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.


Subject(s)
Inteins , Trans-Splicing , Humans , Proteins
3.
PLoS Comput Biol ; 15(9): e1007345, 2019 09.
Article in English | MEDLINE | ID: mdl-31545786

ABSTRACT

HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.


Subject(s)
Conserved Sequence/genetics , Genome, Viral/genetics , HIV-1/genetics , Algorithms , Codon/genetics , Computational Biology , HIV-1/chemistry , HIV-1/ultrastructure , Models, Genetic , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure
4.
Retrovirology ; 15(1): 25, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540207

ABSTRACT

BACKGROUND: NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. RESULTS: Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. CONCLUSIONS: NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594 the flexibility of SL3 appears to be a unique requirement for genome encapsidation and identifies this process as a highly specific drug target. This study is proof of principle that development of a new class of antiretroviral drugs that specifically target viral packaging by binding to the viral genomic RNA is achievable.


Subject(s)
Genome, Viral , HIV Infections/virology , HIV-1/physiology , Nucleic Acid Conformation , RNA, Viral/genetics , Virus Assembly , 5' Untranslated Regions , Gene Products, gag/genetics , Gene Products, gag/metabolism , Genomic Instability , Humans , Protein Binding , Proviruses/genetics , RNA, Viral/chemistry , Real-Time Polymerase Chain Reaction , Viral Load , Virus Integration , Virus Release
5.
Mol Ther Nucleic Acids ; 7: 140-154, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28624190

ABSTRACT

Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV) cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3' exon replacement or 5' exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.

6.
Mol Cancer Res ; 14(1): 44-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26452665

ABSTRACT

UNLABELLED: Homologous recombination (HR) function is critically important in high-grade serous ovarian cancer (HGSOC). HGSOC with intact HR has a worse prognosis and is less likely to respond to platinum chemotherapy and PARP inhibitors. Oncolytic adenovirus, a novel therapy for human malignancies, stimulates a potent DNA damage response that influences overall antitumor activity. Here, the importance of HR was investigated by determining the efficacy of adenovirus type 5 (Ad5) vectors in ovarian cancer. Using matched BRCA2-mutant and wild-type HGSOC cells, it was demonstrated that intact HR function promotes viral DNA replication and augments overall efficacy, without influencing viral DNA processing. These data were confirmed in a wider panel of HR competent and defective ovarian cancer lines. Mechanistically, both BRCA2 and RAD51 localize to viral replication centers within the infected cell nucleus and that RAD51 localization occurs independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Finally, using functional assays of HR competence, despite inducing degradation of MRE11, Ad5 infection does not alter cellular ability to repair DNA double-strand break damage via HR. These data reveal that Ad5 redistributes critical HR components to viral replication centers and enhances cytotoxicity. IMPLICATIONS: Oncolytic adenoviral therapy may be most clinically relevant in tumors with intact HR function.


Subject(s)
Adenoviridae/physiology , BRCA2 Protein/metabolism , Homologous Recombination , Ovarian Neoplasms/metabolism , Rad51 Recombinase/metabolism , Adenoviridae/genetics , Adenovirus E2 Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Female , Genetic Vectors/pharmacology , Humans , Oncolytic Virotherapy , Virus Replication
7.
Cancer Res ; 75(14): 2811-21, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25977332

ABSTRACT

Adenoviruses have been clinically tested as anticancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here, we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumor cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal delivery in mice with human ovarian cancer intraperitoneal xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a nonreplicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using ß3 integrin knockout mice injected intraperitoneally with dl922-947 and ß3 null murine peritoneal macrophages, we confirm a role for macrophage cell surface ß3 integrin in this dl922-947-induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic-specific inhibitor of ß3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an intraperitoneal murine model of ovarian cancer. Importantly, we find no evidence that ß3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anticancer agents.


Subject(s)
Adenoviridae/immunology , Anti-Inflammatory Agents/pharmacology , Inflammation/prevention & control , Integrin beta3/metabolism , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/immunology , Ovarian Neoplasms/therapy , Peptides, Cyclic/pharmacology , Adenoviridae/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/immunology , Antineoplastic Agents/therapeutic use , Cells, Cultured , Combined Modality Therapy , Female , Humans , Integrin beta3/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Oncolytic Viruses/drug effects , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Peptides, Cyclic/therapeutic use , Xenograft Model Antitumor Assays
8.
Mol Oncol ; 9(4): 791-805, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25560085

ABSTRACT

Resistance to paclitaxel chemotherapy frequently develops in ovarian cancer. Oncolytic adenoviruses are a novel therapy for human malignancies that are being evaluated in early phase trials. However, there are no reliable predictive biomarkers for oncolytic adenovirus activity in ovarian cancer. We investigated the link between paclitaxel resistance and oncolytic adenovirus activity using established ovarian cancer cell line models, xenografts with de novo paclitaxel resistance and tumour samples from two separate trials. The activity of multiple Ad5 vectors, including dl922-947 (E1A CR2-deleted), dl1520 (E1B-55K deleted) and Ad5 WT, was significantly increased in paclitaxel resistant ovarian cancer in vitro and in vivo. This was associated with greater infectivity resulting from increased expression of the primary receptor for Ad5, CAR (coxsackie adenovirus receptor). This, in turn, resulted from increased CAR transcription secondary to histone modification in resistant cells. There was increased CAR expression in intraperitoneal tumours with de novo paclitaxel resistance and in tumours from patients with clinical resistance to paclitaxel. Increased CAR expression did not cause paclitaxel resistance, but did increase inflammatory cytokine expression. Finally, we identified dysregulated cell cycle control as a second mechanism of increased adenovirus efficacy in paclitaxel-resistant ovarian cancer. Ad11 and Ad35, both group B adenoviruses that utilise non-CAR receptors to infect cells, are also significantly more effective in paclitaxel-resistant ovarian cell models. Inhibition of CDK4/6 using PD-0332991 was able both to reverse paclitaxel resistance and reduce adenovirus efficacy. Thus, paclitaxel resistance increases oncolytic adenovirus efficacy via at least two separate mechanisms - if validated further, this information could have future clinical utility to aid patient selection for clinical trials.


Subject(s)
Adenoviridae/metabolism , Cell Cycle Checkpoints/drug effects , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Drug Resistance, Neoplasm/drug effects , Oncolytic Viruses/metabolism , Paclitaxel/pharmacology , Up-Regulation/drug effects , Animals , Cell Line, Tumor , Cytokines/metabolism , Female , Histones/metabolism , Humans , Inflammation Mediators/metabolism , Mice, Nude , Ovarian Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Xenograft Model Antitumor Assays
9.
Mol Ther ; 19(3): 490-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21081903

ABSTRACT

Oncolytic adenoviruses show promise as a cancer treatment. However, they generate acute inflammatory responses with production of cytokines, including tumor necrosis factor-α (TNF-α). We investigated whether inhibition of TNF-α augments efficacy of the E1A CR2-deleted adenovirus dl922-947 in ovarian cancer. dl922-947 induced transcription of TNF-α and its downstream signaling targets interleukin-6 and -8 (IL-6 and IL-8) in ovarian cancer cells. In vitro, RNAi-mediated knockdown of TNF-α reduced production of multiple inflammatory cytokines after infection and increased ovarian cancer cell sensitivity to virus cytotoxicity, as did treatment with the anti-TNF-α antibody infliximab. In vivo, stable knockdown of TNF-α in IGROV-1 xenografts increased the anticancer activity of dl922-947. In addition, inhibition of TNF-α using monoclonal antibodies also improved dl922-947 efficacy. This increased efficacy resulted from suppression of cellular inhibitor of apoptosis-1 and -2 (cIAP1 and cIAP2) transcription in malignant cells and a consequent increase in caspase-mediated apoptosis. These findings suggest that TNF-α acts as a survival factor in adenovirus-infected cells. Combining TNF-α inhibition with oncolytic adenoviruses could improve antitumor activity in clinical trials.


Subject(s)
Adenoviridae , Inhibitor of Apoptosis Proteins/metabolism , Oncolytic Viruses , Ovarian Neoplasms , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Adenoviridae/drug effects , Adenoviridae/immunology , Adenoviridae/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Infliximab , Mice , Mice, Inbred BALB C , Mice, Nude , Oncolytic Virotherapy , Oncolytic Viruses/drug effects , Oncolytic Viruses/immunology , Oncolytic Viruses/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Ovarian Neoplasms/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Survival Analysis , Tumor Necrosis Factor-alpha/pharmacology , Virus Replication/drug effects , Xenograft Model Antitumor Assays
10.
Virology ; 400(2): 271-86, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20199789

ABSTRACT

Adeno-associated virus (AAV) type 2 or UV-inactivated AAV (UV-AAV2) infection provokes a DNA damage response that leads to cell cycle arrest at the G2/M border. p53-deficient cells cannot sustain the G2 arrest, enter prolonged impaired mitosis, and die. Here, we studied how non-replicating AAV2 kills p53-deficient osteosarcoma cells. We found that the virus uncouples centriole duplication from the cell cycle, inducing centrosome overamplification that is dependent on Chk1, ATR and CDK kinases, and on G2 arrest. Interference with spindle checkpoint components Mad2 and BubR1 revealed unexpectedly that mitotic catastrophe occurs independently of spindle checkpoint function. We conclude that, in the p53-deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. As AAV2 acts through cellular damage response pathways, the results provide information on the role of Chk1 in mitotic catastrophe after DNA damage signaling in general.


Subject(s)
Cell Cycle , Centrioles/metabolism , DNA Damage , DNA Replication , Dependovirus/pathogenicity , Host-Pathogen Interactions , Cell Line, Tumor , Humans , Tumor Suppressor Protein p53/deficiency
11.
J Mol Biol ; 372(2): 397-406, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17663993

ABSTRACT

Adeno-associated virus (AAV) DNA, by mimicking a stalled replication fork, provokes a DNA damage response that can arrest cells in the G2/M phase of the cell-cycle. This response depends strictly on DNA damage signaling kinases ATR and Chk1. Here, we used AAV to study long-term effects of DNA damage signaling in cells with altered p53 status. In HCT116 cells, in response to damage signaling, p53 represses transcription of the genes encoding mitotic regulators Cdc25C, cyclin B1, and Plk1 to establish a firm G2 arrest. Isogenic cells lacking p53 maintain these three proteins at constant levels yet can still arrest initially in G2 because Chk1 signaling inhibits their enzymatic activities. Unexpectedly, the levels of Chk1 fall abruptly in a proteasome-dependent manner after two days of arrest in G2. In p53-deficient cells, this Chk1 instability is coupled to recovery of the phosphatase activity of Cdc25C and in the kinase activities of Plk1 and Cdk1/cyclin B1. Consequently, the p53-deficient cells enter lethal mitosis. Thus, the Chk1-mediated arrest is transient: it initially causes cells to accumulate in G2 until p53-dependent transcriptional repression of mitotic proteins takes over. p53-deficient cells cannot maintain the DNA damage signaling-induced G2 arrest after Chk1 has disappeared, and continue into catastrophic mitosis. Restoring Chk1 prevents the cells from entering such mitosis. These results reveal a mechanism based on Chk1 stability that regulates mitotic entry after DNA damage and elucidate the controversial phenomenon of p53-promoted cell survival in the face of damage signaling.


Subject(s)
DNA Damage , Dependovirus/physiology , Mitosis , Protein Kinases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Death , Cell Line , Checkpoint Kinase 1 , Chromosomes/genetics , Cyclin B/antagonists & inhibitors , Cyclin B/metabolism , Cyclin B1 , Dependovirus/genetics , Enzyme Stability , Metaphase , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/genetics , cdc25 Phosphatases/antagonists & inhibitors , cdc25 Phosphatases/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...