Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 158(2): 769-77, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11404340

ABSTRACT

Vertebrate retrotransposons have been used extensively for phylogenetic analyses and studies of molecular evolution. Information can be obtained from specific inserts either by comparing sequence differences that have accumulated over time in orthologous copies of that insert or by determining the presence or absence of that specific element at a particular site. The presence of specific copies has been deemed to be an essentially homoplasy-free phylogenetic character because the probability of multiple independent insertions into any one site has been believed to be nil. Mys elements are a type of LTR-containing retrotransposon present in Sigmodontine rodents. In this study we have shown that one particular insert, mys-9, is an extremely old insert present in multiple species of the genus Peromyscus. We have found that different copies of this insert show a surprising range of sizes, due primarily to a continuing series of SINE (short interspersed element) insertions into this locus. We have identified two hot spots for SINE insertion within mys-9 and at each hot spot have found that two independent SINE insertions have occurred at identical sites. These results have major repercussions for phylogenetic analyses based on SINE insertions, indicating the need for caution when one concludes that the existence of a SINE at a specific locus in multiple individuals is indicative of common ancestry. Although independent insertions at the same locus may be rare, SINE insertions are not homoplasy-free phylogenetic markers.


Subject(s)
Retroviridae/genetics , Short Interspersed Nucleotide Elements/genetics , Alleles , Animals , Base Sequence , DNA/metabolism , Evolution, Molecular , Models, Genetic , Molecular Sequence Data , Peromyscus , Phylogeny , Retroelements/genetics , Sequence Analysis, DNA , Terminal Repeat Sequences
2.
J Endocrinol ; 169(1): 97-110, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11250651

ABSTRACT

Dietary factors play an important role in both the development and prevention of human cancers, including breast carcinoma. One dietary micronutrient, sodium butyrate (NaB), is a major end product of dietary starch and fiber, produced naturally during digestion by anaerobic bacteria in the cecum and colon. NaB is a potent growth inhibitor and initiates cell differentiation for many cell types in vitro. In this study, we investigated the effects of NaB on three human mammary epithelial cells and regulation of the IGF axis, specifically, IGF-binding protein-3 (IGFBP-3), a known growth regulator in human mammary cells, and IGFBP-related protein 2 (IGFBP-rP2)/connective tissue growth factor. NaB inhibited DNA synthesis, as measured by [3H]thymidine incorporation, in estrogen-responsive (MCF-7) and estrogen-non-responsive (Hs578T) breast cancer cells, and normal human mammary epithelial cells (HMEC) to a similar degree (up to 90% inhibition at 1-10 mM concentrations). Treatment of cells with NaB induced histone hyperacetylation, suggesting that NaB exerts its biological effects, at least in part, as a histone deacetylase inhibitor in mammary epithelial cells. Treatment of Hs578T cells with NaB caused an induction of apoptotic cell death. NaB treatment resulted in increased levels of p21(Waf1/Cip1) mRNA and protein in Hs578T cells and distinct upregulation of p27(Kip1) in HMEC, suggesting that NaB activates different genes involved in cell cycle arrest, depending upon the cell type. In the same context, among the IGFBP superfamily members tested, NaB specifically upregulated the expression of IGFBP-3 and IGFBP-rP2. These two proteins are known to be involved in inhibition of mammary epithelial cell replication. Northern blot analysis showed that NaB treatment at 1-10 mM concentrations caused a dose-dependent stimulation of IGFBP-3 mRNA expression in cancerous cells and IGFBP-rP2 mRNA expression in both cancerous and non-cancerous cells. Protein data from Western ligand blot and immunoblot analyses demonstrated parallel results. In summary, we have demonstrated that NaB (i) uniformly suppresses DNA synthesis in both cancerous and non-cancerous mammary cells, and (ii) upregulates IGFBP-3 and IGFBP-rP2 mRNA and protein levels in cancerous and non-cancerous mammary cells. These results provide the first demonstration that butyrate regulates the IGFBP system in the human mammary system.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Butyrates/pharmacology , Cell Cycle Proteins , Insulin-Like Growth Factor Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins , Micronutrients/pharmacology , Tumor Suppressor Proteins , Acetylation , Apoptosis , Blotting, Northern , Blotting, Western , Breast/drug effects , Cells, Cultured , Connective Tissue Growth Factor , Cyclin-Dependent Kinase Inhibitor p21 , Cyclin-Dependent Kinase Inhibitor p27 , Cyclins/metabolism , Enzyme Inhibitors/metabolism , Epithelium/drug effects , Epithelium/metabolism , Female , Growth Substances/metabolism , Histones/metabolism , Humans , Immediate-Early Proteins/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Microtubule-Associated Proteins/metabolism , Tumor Cells, Cultured
3.
Pediatrics ; 104(4 Pt 2): 1018-21, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10506255

ABSTRACT

The insulin-like growth factor (IGF) binding proteins (IGFBPs) were initially identified as carrier proteins for IGF-I and IGF-II in a variety of biologic fluids. Their presumed function was to protect IGF peptides from degradation and clearance, increase the half-life of the IGFs, and deliver them to appropriate tissue receptors. The concept of IGFBPs as simple carrier proteins has been complicated, however, by a number of observations: 1) the six IGFBPs vary in their tissue expression and their regulation by other hormones and growth factors; 2) the IGFBPs are subjected to proteolytic degradation, thereby altering their affinities for the IGFs; 3) IGFBP-3 and IGFBP-5, in addition to binding IGFs, also can associate with an acid-labile subunit, thereby increasing further the half-life of the IGFs; 4) in addition to modifying the access of IGF peptides to IGF and insulin receptors, several of the IGFBPs may be capable of increasing IGF action; 5) some of the IGFBPs may be capable of IGF-independent regulation of cell growth; 6) some of the IGFBPs are associated with cell membranes or possibly with membrane receptors; and 7) some of the IGFBPs have nuclear recognition sites and may be found within the nucleus. Additionally, a number of cDNAs identified recently have been found to encode proteins that bind IGFs, but with substantially lower affinities than is the case with IGFBPs. The N-terminal regions of the predicted proteins are structurally homologous to the classic IGFBPs, with conservation of the cysteine-rich region. These observations suggest that these low-affinity binders are members of an IGFBP superfamily, capable of regulating cell growth by both IGF-dependent and IGF-independent mechanisms.insulin-like growth factor, insulin-like growth factor binding proteins.


Subject(s)
Insulin-Like Growth Factor Binding Proteins , Humans , Insulin-Like Growth Factor Binding Proteins/classification , Insulin-Like Growth Factor Binding Proteins/physiology , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...