Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 11(4): e0152985, 2016.
Article in English | MEDLINE | ID: mdl-27110941

ABSTRACT

Integrated Discrete Multiple Organ Co-culture (IDMOC) is emerging as an in-vitro alternative to in-vivo animal models for pharmacology studies. IDMOC allows dose-response relationships to be investigated at the tissue and organoid levels, yet, these relationships often exhibit responses that are far more complex than the binary responses often measured in whole animals. To accommodate departure from binary endpoints, IDMOC requires an expansion of analytic techniques beyond simple linear probit and logistic models familiar in toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit significant non-linearity such as local maxima or minima, and may include non-independent measures. Generalized additive mixed-modeling (GAMM) provides an alternative description of dose-response that relaxes assumptions of independence and linearity. We compared GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology studies.


Subject(s)
Models, Biological , 3T3-L1 Cells , Animals , Coculture Techniques , Humans , Mice
2.
Conserv Biol ; 30(5): 1048-59, 2016 10.
Article in English | MEDLINE | ID: mdl-26872411

ABSTRACT

Hibernating bats have undergone severe recent declines across the eastern United States, but the cause of these regional-scale declines has not been systematically evaluated. We assessed the influence of white-nose syndrome (an emerging bat disease caused by the fungus Pseudogymnoascus destructans, formerly Geomyces destructans) on large-scale, long-term population patterns in the little brown myotis (Myotis lucifugus), the northern myotis (Myotis septentrionalis), and the tricolored bat (Perimyotis subflavus). We modeled population trajectories for each species on the basis of an extensive data set of winter hibernacula counts of more than 1 million individual bats from a 4-state region over 13 years and with data on locations of hibernacula and first detections of white-nose syndrome at each hibernaculum. We used generalized additive mixed models to determine population change relative to expectations, that is, how population trajectories differed with a colony's infection status, how trajectories differed with distance from the point of introduction of white-nose syndrome, and whether declines were concordant with first local observation of the disease. Population trajectories in all species met at least one of the 3 expectations, but none met all 3. Our results suggest, therefore, that white-nose syndrome has affected regional populations differently than was previously understood and has not been the sole cause of declines. Specifically, our results suggest that in some areas and species, threats other than white-nose syndrome are also contributing to population declines, declines linked to white-nose syndrome have spread across large geographic areas with unexpected speed, and the disease or other threats led to declines in bat populations for years prior to disease detection. Effective conservation will require further research to mitigate impacts of white-nose syndrome, renewed attention to other threats to bats, and improved surveillance efforts to ensure early detection of white-nose syndrome.


Subject(s)
Chiroptera , Conservation of Natural Resources , Hibernation , Mycoses/veterinary , Animal Diseases , Animals , Ascomycota , Nose , Population Dynamics , Seasons
3.
PLoS One ; 8(6): e65907, 2013.
Article in English | MEDLINE | ID: mdl-23805192

ABSTRACT

Bats are diverse and ecologically important, but are also subject to a suite of severe threats. Evidence for localized bat mortality from these threats is well-documented in some cases, but long-term changes in regional populations of bats remain poorly understood. Bat hibernation surveys provide an opportunity to improve understanding, but analysis is complicated by bats' cryptic nature, non-conformity of count data to assumptions of traditional statistical methods, and observation heterogeneities such as variation in survey timing. We used generalized additive mixed models (GAMMs) to account for these complicating factors and to evaluate long-term, regional population trajectories of bats. We focused on four hibernating bat species - little brown myotis (Myotis lucifugus), tri-colored bat (Perimyotis subflavus), Indiana myotis (M. sodalis), and northern myotis (M. septentrionalis) - in a four-state region of the eastern United States during 1999-2011. Our results, from counts of nearly 1.2 million bats, suggest that cumulative declines in regional relative abundance by 2011 from peak levels were 71% (with 95% confidence interval of ±11%) in M. lucifugus, 34% (±38%) in P. subflavus, 30% (±26%) in M. sodalis, and 31% (±18%) in M. septentrionalis. The M. lucifugus population fluctuated until 2004 before persistently declining, and the populations of the other three species declined persistently throughout the study period. Population trajectories suggest declines likely resulted from the combined effect of multiple threats, and indicate a need for enhanced conservation efforts. They provide strong support for a change in the IUCN Red List conservation status in M. lucifugus from Least Concern to Endangered within the study area, and are suggestive of a need to change the conservation status of the other species. Our modeling approach provided estimates of uncertainty, accommodated non-linearities, and controlled for observation heterogeneities, and thus has wide applicability for evaluating population trajectories in other wildlife species.


Subject(s)
Chiroptera/physiology , Environmental Monitoring , Models, Biological , Animals , Population Dynamics , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL