Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 261(2): 148-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25515182

ABSTRACT

We present ScatterJ, an ImageJ plugin that allows for extracting qualitative as well as quantitative information from analytical microscopy datasets. A large variety of analytical microscopy methods are used to obtain spatially resolved chemical information. The resulting datasets are often large and complex, and can contain information that is not obvious or directly accessible. ScatterJ extends and complements existing methods to extract information on correlation and colocalization from pairs of species-specific or element-specific maps. We demonstrate the possibilities to extract information using example datasets from biogeochemical studies, although the plugin is not restricted to this type of research. The information that we could extract from our existing data helped to further our understanding of biogeochemical processes such as mineral formation or heavy metal sorption. ScatterJ can be used for a variety of different two-dimensional (2D) and three-dimensional (3D) datasets such as energy-dispersive X-ray spectroscopy maps, 3D confocal laser scanning microscopy maps, and 2D scanning transmission X-ray microscopy maps.

2.
Geobiology ; 12(4): 340-61, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24828365

ABSTRACT

The formation of cell-(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2-D microscopy techniques, the 3-D and internal structure remain obscure. In this study, we examined the 3-D structure of cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3-D microscopy techniques. We obtained 3-D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4-200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike- or platelet-shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell-(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell-(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3-D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X-ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a comprehensive understanding of structure and composition of the various Fe-precipitates and their association with bacterial cells and EPS.


Subject(s)
Comamonadaceae/metabolism , Electron Microscope Tomography , Iron Compounds/metabolism , Minerals/chemistry , Iron/metabolism , Iron Compounds/chemistry , Nitrates/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...