Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(9): 8083-8097, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37093765

ABSTRACT

Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule ß-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of ß-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of ß-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.


Subject(s)
Antioxidants , beta Carotene , beta Carotene/chemistry , Antioxidants/pharmacology , Phosphorus/chemistry , Oxidation-Reduction
2.
Proc Natl Acad Sci U S A ; 119(44): e2208040119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279452

ABSTRACT

Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth-Holm-Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture-based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.


Subject(s)
Neoplasms , Organoids , Female , Humans , Cattle , Animals , Organoids/metabolism , Hydrogels/chemistry , Laminin/pharmacology , Laminin/metabolism , Proteomics , Endometrium , Neoplasms/metabolism
3.
ACS Nano ; 16(7): 10679-10691, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35759757

ABSTRACT

The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in two-dimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (ß) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of ß-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.

4.
Respirology ; 27(6): 427-436, 2022 06.
Article in English | MEDLINE | ID: mdl-35176813

ABSTRACT

BACKGROUND AND OBJECTIVE: Inhalation of high concentrations of respirable crystalline silica (RCS) can lead to silicosis. RCS contains varying levels of iron, which can cause oxidative stress and stimulate ferritin production. This study evaluated iron-related and inflammatory markers in control and silicosis patients. METHODS: A cohort of stone benchtop industry workers (n = 18) were radiologically classified by disease severity into simple or complicated silicosis. Peripheral blood and bronchoalveolar lavage (BAL) were collected to measure iron, ferritin, C-reactive protein, serum amyloid A and serum silicon levels. Ferritin subunit expression in BAL and transbronchial biopsies was analysed by reverse transcription quantitative PCR. Lipid accumulation in BAL macrophages was assessed by Oil Red O staining. RESULTS: Serum iron levels were significantly elevated in patients with silicosis, with a strong positive association with serum ferritin levels. In contrast, markers of systemic inflammation were not increased in silicosis patients. Serum silicon levels were significantly elevated in complicated disease. BAL macrophages from silicosis patients were morphologically consistent with lipid-laden foamy macrophages. Ferritin light chain (FTL) mRNA expression in BAL macrophages was also significantly elevated in simple silicosis patients and correlated with systemic ferritin. CONCLUSION: Our findings suggest that elevated iron levels during the early phases of silicosis increase FTL expression in BAL macrophages, which drives elevated BAL and serum ferritin levels. Excess iron and ferritin were also associated with the emergence of a foamy BAL macrophage phenotype. Ferritin may represent an early disease marker for silicosis, where increased levels are independent of inflammation and may contribute to fibrotic lung remodelling.


Subject(s)
Ferritins , Silicosis , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Ferritins/analysis , Ferritins/metabolism , Humans , Inflammation/metabolism , Iron/analysis , Iron/metabolism , Lipids , Lung/pathology , Macrophages/metabolism , Silicon Dioxide
5.
Int J Biol Macromol ; 98: 84-93, 2017 May.
Article in English | MEDLINE | ID: mdl-28126458

ABSTRACT

An impedimetric genosensor was fabricated for detection of hepatitis C virus (HCV) genotype 1 in serum, based on hybridization of the probe with complementary target cDNA from sample. To achieve it, probe DNA complementary to HCVgene was immobilized on the surface of methylene blue (MB) doped silica nanoparticles MB@SiNPs) modified fluorine doped tin oxide (FTO) electrode. The synthesized MB@SiNPs was characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) pattern. This modified electrode (ssDNA/MB@SiNPs/FTO) served both as a signal amplification platform (due to silica nanoparticles (SiNPs) as well as an electrochemical indicator (due to methylene blue (MB)) for the detection of the HCV DNA in patient serum sample. The genosensor was optimized and evaluated. The sensor showed a dynamic linear range 100-106 copies/mL, with a detection limit of 90 copies/mL. The sensor was applied for detection of HCV in sera of hepatitis patient and could be renewed. The half life of the sensor was 4 weeks. The MB@SiNPs/FTO electrode could be used for preparation of other gensensors also.


Subject(s)
DNA Probes/chemistry , DNA, Viral/analysis , Hepacivirus/genetics , Methylene Blue/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Base Sequence , Biosensing Techniques/instrumentation , DNA Probes/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Electric Impedance , Electrochemistry , Electrodes , Humans , Limit of Detection , Nanocomposites/chemistry , Nucleic Acid Hybridization
6.
Biosens Bioelectron ; 88: 249-257, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27570055

ABSTRACT

The present study was aimed to develop an ultrasensitive technique for electroanalysis of ketamine; a date rape drug. It involved the fabrication of nano-hybrid based electrochemical micro fluidic paper-based analytical device (EµPADs) for electrochemical sensing of ketamine. A paper chip was developed using zeolites nanoflakes and graphene-oxide nanocrystals (Zeo-GO). EµPAD offers many advantages such as facile approach, economical and potential for commercialization. Nanocrystal modified EµPAD showed wide linear range 0.001-5nM/mL and a very low detection limit of 0.001nM/mL. The developed sensor was tested in real time samples like alcoholic and non-alcoholic drinks and found good correlation (99%). The hyphenation of EµPAD integrated with nanocrystalline Zeo-GO for detection of ketamine has immense prospective for field-testing platforms. An extensive development could be made for industrial translation of this fabricated device.


Subject(s)
Anesthetics, Dissociative/analysis , Beverages/analysis , Electrochemical Techniques/instrumentation , Graphite/chemistry , Ketamine/analysis , Point-of-Care Systems , Zeolites/chemistry , Electrodes , Equipment Design , Limit of Detection , Microfluidic Analytical Techniques/instrumentation , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oxides/chemistry , Paper
SELECTION OF CITATIONS
SEARCH DETAIL
...