Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(4): 221424, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090964

ABSTRACT

The feeding apparatus of sea turtles comprises cornified keratinous rhamphothecae overlaying a bony rostrum. Although keratin is less stiff than the enamel of toothed animals, certain species of sea turtles are capable of withstanding large forces when feeding on hard prey. We aimed to quantify the mineral density, water content and compressive mechanical properties of rhamphothecae from two durophagous species: loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) sea turtles. Since loggerheads theoretically produce the greater bite forces of these two species, we predicted that keratin from their rhamphothecae would have a greater mineral density and be stiffer, stronger and tougher compared with Kemp's ridley sea turtles. We found that total water weight of hydrated specimens (20%) was consistent between species. Rhamphotheca mineral density ranged between 0 and 0.069 g cm-3; loggerheads had significantly greater mineral density compared with Kemp's ridleys, for which several specimens had no mineral detected. Despite the greater mineral density in loggerheads, we found no significant difference in Young's modulus, yield strength or toughness between these species. In addition to mineral density, our findings suggest that other material components, such as sulfur, may be influencing the material properties of keratin from sea turtle rhamphothecae.

2.
J Exp Biol ; 225(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35582832

ABSTRACT

Marine mammals have undergone a dramatic series of morphological transformations throughout their evolutionary history that facilitated their ecological transition to life in the water. Pinnipeds are a diverse clade of marine mammals that evolved from terrestrial carnivorans in the Oligocene (∼27 million years ago). However, pinnipeds have secondarily lost the dental innovations emblematic of mammalian and carnivoran feeding, such as a talonid basin or shearing carnassials. Modern pinnipeds do not masticate their prey, but can reduce prey size through chopping behavior. Typically, small prey are swallowed whole. Nevertheless, pinnipeds display a wide breadth of morphology of the post-canine teeth. We investigated the relationship between dental morphology and pinniped feeding by measuring the puncture performance of the cheek-teeth of seven extant pinniped genera. Puncture performance was measured as the maximum force and the maximum energy required to puncture a standardized prey item (Loligo sp.). We report significant differences in the puncture performance values across the seven genera, and identify three distinct categories based on cheek-teeth morphology and puncture performance: effective, ineffective and moderate puncturers. In addition, we measured the overall complexity of the tooth row using two different metrics, orientation patch count rotated (OPCR) and relief index (RFI). Neither metric of complexity predicted puncture performance. Finally, we discuss these results in the broader context of known pinniped feeding strategies and lay the groundwork for subsequent efforts to explore the ecological variation of specific dental morphologies.


Subject(s)
Caniformia , Tooth , Animals , Biological Evolution , Caniformia/anatomy & histology , Feeding Behavior , Phylogeny , Punctures
4.
J Morphol ; 282(8): 1233-1244, 2021 08.
Article in English | MEDLINE | ID: mdl-33982303

ABSTRACT

Morphological data on craniofacial and axial bifurcation in sea turtles is not well documented in the literature. Here, we use micro-computed tomography (µ-CT) imaging to describe the body, skull, and vertebral morphology in axially-bifurcated cheloniid sea turtle embryos and hatchlings (Chelonia mydas and Caretta caretta) from south Florida beaches. We describe three types of craniofacial and axial bifurcations: bifacial, bicephalic, and bicephalic with biaxial duplication ranging from facial bones to the sacrum. We predicted smaller body dimensions in bifacial and bicephalic embryos and hatchlings compared with their normal counterparts. In addition, we hypothesized that bicephalic individuals would have greater rostral deviation angles than bifacial animals, and that vertebral dimensions would vary between the control and anomalous embryos and hatchlings. Among hatchlings (developmental Stage 31), we found that maximum curved carapace length and curved carapace width were greatest in the control specimens when compared with the anomalous specimens. Overall, we found that rostral deviations were smaller in bifacial animals compared with their bicephalic counterparts. Right and left rostral deviations were symmetrical or nearly symmetrical in all bifacial and bicephalic specimens. Among C. caretta, we found that bicephalic animals had greater standardized vertebral measurements than their bifacial conspecifics. In bifacial animals, bifurcation extended to either the frontal or parietal skull bones, while duplication extended to C5 vertebrae and T8 vertebrae in bicephalic animals. This study provides an in-depth description of anatomical alterations associated with these abnormalities. Prognosis of these organisms is poor; however, understanding the prevalence of these malformations can allow for better assessments of population health, as numerous environmental factors are known to lead to these changes.


Subject(s)
Turtles , Animals , X-Ray Microtomography
5.
Integr Comp Biol ; 61(2): 749-758, 2021 09 08.
Article in English | MEDLINE | ID: mdl-33988705

ABSTRACT

A diagnostic characteristic of stingrays in the family Dasyatidae is the presence of a defensive, partially serrated spine located on the tail. We assessed the contribution of caudal spine morphology on puncture and withdrawal performance from two congeneric, co-occurring stingrays, the Atlantic stingray, Hypanus sabinus, and the bluntnose stingray, Hypanus say. Spines exhibited a high degree of morphological variability. Stingray spines were serrated along 50.8% (H. sabinus) or 62.3% (H. say) of their length. Hypanus say had a greater number of serrations along each side of the spine (30.4) compared with H. sabinus (20.7) but the pitch did not differ between species. We quantified spine puncture and withdrawal forces using porcine skin as a model for human skin. Puncture and withdrawal forces did not differ significantly between species, or within H. say, but withdrawal force was greater than puncture force for H. sabinus. We incorporated micro-computed tomography scanning to quantify tissue mineral density and found that for both species, the shaft of the spine was more heavily mineralized than the base, and midway (50%) along the length of the spine was more heavily mineralized than the tip. The mineralization variability along the spine shaft may create a stiff structure that can fracture once embedded within the target tissue and act as an effective predator deterrent.


Subject(s)
Skates, Fish , Spine/anatomy & histology , Animals , Bites and Stings , Skates, Fish/anatomy & histology , X-Ray Microtomography
6.
J Anat ; 238(3): 643-652, 2021 03.
Article in English | MEDLINE | ID: mdl-33058161

ABSTRACT

Cetaceans (dolphins, whales, and porpoises) are fully aquatic mammals that are supported by water's buoyancy and swim through axial body bending. Swimming is partially mediated by variations in vertebral morphology that creates trade-offs in body flexibility and rigidity between axial regions that either enhance or reduce displacement between adjacent vertebrae. Swimming behavior is linked to foraging ecology, where deep-diving cetaceans glide a greater proportion of the time compared to their shallow-diving counterparts. In this study, we categorized 10 species of cetaceans (Families Delphinidae and Kogiidae) into functional groups determined by swimming patterns (rigid vs. flexible torso) and diving behavior (shallow vs. deep). Here, we quantify vertebral trabecular microarchitecture (a) among functional groups (rigid-torso shallow diver (RS), rigid-torso deep diver (RD), and flexible-torso deep diver (FD)), and (b) among vertebral column regions (posterior thoracic, lumbar, caudal peduncle, and fluke insertion). We microCT scanned vertebral bodies, from which 1-5 volumes of interest were selected to quantify bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (TbTh), trabecular number (TbN), trabecular separation (TbSp), and degree of anisotropy (DA). We found that BV/TV was greatest in the rigid-torso shallow-diving functional group, smallest in flexible-torso deep-diving species, and intermediate in the rigid-torso deep-diving group. DA was significantly greater in rigid-torso caudal oscillators than in their flexible-torso counterparts. We found no variation among vertebral regions for any microarchitectural variables. Despite having osteoporotic skeletons, cetacean vertebrae had greater BV/TV, TbTh, and DA than previously documented in terrestrial mammalian bone. Cetacean species are an ideal model to investigate the long-term adaptations, over an animal's lifetime and over evolutionary time, of trabecular bone in non-weight-bearing conditions.


Subject(s)
Cancellous Bone/anatomy & histology , Dolphins/anatomy & histology , Spine/anatomy & histology , Whales/anatomy & histology , Animals , Cancellous Bone/physiology , Diving/physiology , Dolphins/physiology , Spine/physiology , Swimming/physiology , Whales/physiology
7.
J Exp Biol ; 223(Pt 6)2020 03 16.
Article in English | MEDLINE | ID: mdl-32098877

ABSTRACT

Mammals living in aquatic environments load their axial skeletons differently from their terrestrial counterparts. The structure and mechanical behavior of trabecular bone can be especially indicative of varying habitual forces. Here, we investigated vertebral trabecular bone mechanical properties (yield strength, stiffness and toughness) throughout development in Florida manatees (Trichechus manatus latirostris), obligate undulatory swimmers. Thoracic, lumbar and caudal vertebrae were dissected from manatees (N=20) during necropsies. We extracted 6 mm3 samples from vertebral bodies and tested them in compression in three orientations (rostrocaudal, dorsoventral and mediolateral) at 2 mm min-1 We determined variation in mechanical properties between sexes, and among developmental stages, vertebral regions and testing orientations. We also investigated the relationships between vertebral process lengths and properties of dorsoventrally and mediolaterally tested bone. Rostrocaudally tested bone was the strongest, stiffest and toughest, suggesting that this is the principal direction of stress. Our results showed that bone from female subadults was stronger and stiffer than that of their male counterparts; based on these data, we hypothesize that hormonal shifts at sexual maturity may partially drive these differences. In calves, bone from the posterior region was stronger and tougher than that from the anterior region. We hypothesize that as animals grow rapidly throughout early development, bone in the posterior region would be the most ossified to support the rostrocaudal force propagation associated with undulatory swimming.


Subject(s)
Trichechus manatus , Animals , Cattle , Female , Male , Orientation , Spine , Swimming
8.
J Exp Biol ; 221(Pt 24)2018 12 12.
Article in English | MEDLINE | ID: mdl-30352822

ABSTRACT

Cartilaginous shark skeletons experience axial deformation at the intervertebral joints, but also within the mineralized cartilaginous centrum, which can compress to between 3% and 8% of its original length in a free-swimming shark. Previous studies have focused on shark centra mechanical properties when loaded to failure; our goal was to determine properties when compressed to a biologically relevant strain. We selected vertebrae from six shark species and from the anterior and posterior regions of the vertebral column. Centra were X-radiographed to measure double cone proportion and apex angles, and were mechanically tested at three displacement rates to 4% strain. We determined the variation in toughness and stiffness of vertebral centra among shark species and ontogenetic stages, testing strain rates, and compared anterior and posterior regions of the vertebral column. Our results suggest that toughness and stiffness, which are positively correlated, may be operating in concert to support lateral body undulations, while providing efficient energy transmission and return in these swift-swimming apex predators. We analyzed the contribution of double cone proportion and apex angle to centra mechanical behavior. We found that the greatest stiffness and toughness were in the youngest sharks and from the posterior body, and there was significant interspecific variation. Significant inverse correlations were found between mechanical properties and double cone apex angle suggesting that properties can be partially attributed to the angle forming the double cone apex. These comparative data highlight the importance of understanding cartilaginous skeleton mechanics under a wide variety of loading conditions representative of swimming behaviors seen in the wild.


Subject(s)
Sharks/physiology , Spine/physiology , Swimming/physiology , Animals , Biomechanical Phenomena , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...