Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 30(7): 1871-9, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24491227

ABSTRACT

With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 µm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

2.
Phys Rev Lett ; 106(12): 127005, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21517346

ABSTRACT

We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission. From detailed low-energy electron diffraction measurements and an analysis of the angle-resolved photoemission polarization dependence, we show that these pockets are not intrinsic but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from angle-resolved photoemission [Meng et al., Nature (London) 462, 335 (2009)] have a similar structural origin and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO2 plane.

3.
Rev Sci Instrum ; 80(5): 053108, 2009 May.
Article in English | MEDLINE | ID: mdl-19485493

ABSTRACT

We present a method for removing spectrometer specific contributions to x-ray photoelectron spectroscopy data. We consider the degree of linearity of the detection system, the strength of the internal analyzer inelastic background, and finally determine the spectrometer's transmission function. The procedures presented here are performed on a SPECS Phoibos 150 hemispherical analyzer with a two-dimensional detection system, but are applicable to a wide variety of different electron spectrometers. The spectrometer's detection system is found to deviate from linear behavior by a few percent over the whole intensity range studied. The size of the analyzer internal inelastic scattering has been measured, and we find that it can normally be neglected at large pass energies or high kinetic energies for most types of analysis (contributing less than 1% at 100 eV pass energy). Finally, we measure the transmission function of the analyzer and lens system for a variety of different settings with the preceding corrections applied, and find that the form of the transmission function is dependent on small changes in the system's settings.

4.
Phys Rev Lett ; 101(21): 216103, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19113428

ABSTRACT

The surfaces generated by cleaving nonpolar, two-dimensional oxides are often considered to be perfect or ideal. However, single particle spectroscopies on Sr2RuO4, an archetypal nonpolar two-dimensional oxide, show significant cleavage temperature dependence. We demonstrate that this is not a consequence of the intrinsic characteristics of the surface: lattice parameters and symmetries, step heights, atom positions, or density of states. Instead, we find a marked increase in the density of defects at the mesoscopic scale with increased cleave temperature. The potential generality of these defects to oxide surfaces may have broad consequences to interfacial control and the interpretation of surface sensitive measurements.

5.
Phys Rev Lett ; 99(18): 187001, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-17995427

ABSTRACT

We employ a combination of chemical substitution and angle resolved photoemission spectroscopy to prove that the Fermi level in the gamma band of Sr(2-y)La(y)RuO(4) can be made to traverse a van Hove singularity. Remarkably, the large mass renormalization has little dependence on either k or doping. By combining the results from photoemission with thermodynamic measurements on the same batches of crystals, we deduce a parametrization of the full many-body quasiparticle dispersion in Sr(2)RuO(4) which extends from the Fermi level to approximately 20 meV above it.

6.
Phys Rev Lett ; 96(24): 246402, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16907260

ABSTRACT

The electronic structure of the layered 4d transition metal oxide Sr2RhO4 is investigated by angle resolved photoemission. We find well-defined quasiparticle excitations with a highly anisotropic dispersion, suggesting a quasi-two-dimensional Fermi-liquid-like ground state. Markedly different from the isostructural Sr2RuO4, only two bands with dominant Rh 4dxz,zy character contribute to the Fermi surface. A quantitative analysis of the photoemission quasiparticle band structure is in excellent agreement with bulk data. In contrast, it is found that state-of-the-art density functional calculations in the local density approximation differ significantly from the experimental findings.

7.
Phys Rev Lett ; 96(15): 157003, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16712188

ABSTRACT

A recent highlight in the study of high-T(c) superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, nonsuperconducting single-layer Bi-cuprate (Bi2Sr2CuO6). In addition to the appearance of a strong overall weakening, we also find that the weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.

8.
Phys Rev Lett ; 96(10): 107601, 2006 Mar 17.
Article in English | MEDLINE | ID: mdl-16605788

ABSTRACT

High-resolution angular resolved photoemission data reveal well-defined quasiparticle bands of unusually low weight, emerging in line with the metallic phase of Ca(3)Ru(2)O(7) below approximately 30 K . At the bulk structural phase transition temperature of 48 K, we find clear evidence for an electronic instability, gapping large parts of the underlying Fermi surface that appears to be nested. Metallic pockets are found to survive in the small, non-nested sections, constituting a low-temperature Fermi surface with 2 orders of magnitude smaller volume than in all other metallic ruthenates. The Fermi velocities and volumes of these pockets are in agreement with the results of complementary quantum oscillation measurements on the same crystal batches.

9.
Science ; 307(5711): 901-4, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15705845

ABSTRACT

Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.

10.
Phys Rev Lett ; 93(26 Pt 1): 267002, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15698008

ABSTRACT

The evolution of Ca2-xNaxCuO2Cl2 from Mott insulator to superconductor was studied using angle-resolved photoemission spectroscopy. By measuring both the excitations near the Fermi energy as well as nonbonding states, we tracked the doping dependence of the electronic structure and the chemical potential with unprecedented precision. Our work reveals failures in the standard weakly interacting quasiparticle scenario, including the broad line shapes of the insulator and the apparently paradoxical shift of the chemical potential within the Mott gap. To resolve this, we develop a model where the quasiparticle is vanishingly small at half filling and grows upon doping, allowing us to unify properties such as the dispersion and Fermi wave vector with the chemical potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...