Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Neurosci ; 102: 65-70, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35728397

ABSTRACT

Medulloblastoma in adult patients is a rare condition with limited contemporary demographic and treatment outcome data available in an Australian population. We conducted a retrospective review of patterns of care and outcomes of adult patients diagnosed with medulloblastoma treated at major neuro-oncology centres across Australia between January 2010 and December 2019. A total of 80 patients were identified and the median follow-up after diagnosis was 59.2 (range 0.5-204) months. A variety of chemotherapy regimens were used in the adjuvant and recurrent settings. The median overall survival (mOS) was 78 months (IQR 17.5-94.8). Patients who had no residual disease post-resection or with SHH-subtype tumours had a numerically longer 5-year survival rate than those with residual disease post resection or non-SHH subtypes respectively. The median time to recurrence from diagnosis was 18.4 months. The median OS from 1st relapse was 22.1 months (95% CI 11.7-31.4) and mOS from second relapse was 10.2 months (95% CI 6.6 - NR). This is the largest dataset examining patterns of care of adult patients with medulloblastoma in an Australian population. Substantial variation existed in the chemotherapy agents used in the adjuvant and recurrent setting. As has been demonstrated in a paediatric population, trials such as the upcoming EORTC 1634-BTG/NOA-23 trial (PersoMed-1 study) which are tailoring treatments to molecular profiles are likely to improve outcome in adult medulloblastoma.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Adult , Australia/epidemiology , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/epidemiology , Cerebellar Neoplasms/therapy , Child , Combined Modality Therapy , Humans , Medulloblastoma/drug therapy , Medulloblastoma/therapy , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/therapy , Radiotherapy, Adjuvant , Retrospective Studies
2.
Hum Mol Genet ; 30(24): 2393-2401, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34274969

ABSTRACT

Lung cancer is the commonest cause of cancer deaths worldwide. Although strongly associated with smoking, predisposition to lung cancer is also heritable, with multiple common risk variants identified. Rarely, dominantly inherited non-small-cell lung cancer (NSCLC) has been reported due to somatic mutations in EGFR/ErbB1 and ERBB2. Germline exome sequencing was performed in a multi-generation family with autosomal dominant NSCLC, including an affected child. Tumour samples were also sequenced. Full-length wild-type (wtErbB3) and mutant ERBB3 (mutErbB3) constructs were transfected into HeLa cells. Protein expression, stability, and subcellular localization were assessed, and cellular proliferation, pAkt/Akt and pERK levels determined. A novel germline variant in ERBB3 (c.1946 T > G: p.Iso649Arg), coding for receptor tyrosine-protein kinase erbB-3 (ErbB3), was identified, with appropriate segregation. There was no loss-of-heterozygosity in tumour samples. Both wtErbB3 and mutErbB3 were stably expressed. MutErbB3-transfected cells demonstrated an increased ratio of the 80 kDa form (which enhances proliferation) compared with the full-length (180 kDa) form. MutErbB3 and wtErbB3 had similar punctate cytoplasmic localization pre- and post-epidermal growth factor stimulation; however, epidermal growth factor receptor (EGFR) levels decreased faster post-stimulation in mutErbB3-transfected cells, suggesting more rapid processing of the mutErbB3/EGFR heterodimer. Cellular proliferation was increased in mutErbB3-transfected cells compared with wtErbB3 transfection. MutErbB3-transfected cells also showed decreased pAkt/tAkt ratios and increased pERK/tERK 30 min post-stimulation compared with wtErbB3 transfection, demonstrating altered signalling pathway activation. Cumulatively, these results support this mutation as tumorogenic. This is the first reported family with a germline ERBB3 mutation causing heritable NSCLC, furthering understanding of the ErbB family pathway in oncogenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Child , Germ Cells/metabolism , Germ-Line Mutation , HeLa Cells , Humans , Lung Neoplasms/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics
3.
J Clin Neurosci ; 90: 1-7, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34275531

ABSTRACT

Pineal germinoma is rare with high cure rates following craniospinal radiotherapy. Efforts to reduce the radiotherapy dose and field via combination with chemotherapy suggest comparable disease control and reduced neurocognitive impairments, while the efficacy of immunotherapy in pineal germinoma remains undetermined. This report aimed to review clinical outcomes in patients treated for pineal germinoma in Queensland, Australia, and assess for Programmed Death-Ligand1 (PD-L1) expression. Patients who commenced radiation and/or chemotherapy for pineal germinoma from 2005 to 2017 were retrospectively identified using Queensland Oncology Online database. Demographic, diagnostic, treatment, and outcome data was obtained from electronic medical records. PD-L1 immuno-histochemistry was performed on available specimens. Eighteen patients with long-term follow-up data were identified. Median age at diagnosis was 16.8 years (range 9-46 years). Diagnosis was made histologically in fifteen patients, and radiologically in three. All patients underwent radiotherapy (median 36 Gy (range 21-54 Gy)) with lower median dose delivered with whole ventricle irradiation (12/18patients) than craniospinal irradiation (5/18patients). Sixteen patients received chemotherapy preceding radiotherapy. All patients are alive at median 7.25 years from primary treatment completion (range 2.03-13.1 years). Relapse occurred in three patients (16.67%) following treatment response, all of whom achieved remission following high-dose chemotherapy with stem-cell support and craniospinal radiotherapy. Post-treatment functional outcomes were similarly excellent. PD-L1 expression was low (1-49% cells) or negative in 87% of tumours tested but results were confounded by specimen quality and availability. Reduced-dose radiotherapy with chemotherapy does not compromise outcome and is standard of care at this institution. Immunotherapy is unlikely to become standard treatment in the near future.


Subject(s)
Brain Neoplasms/therapy , Chemoradiotherapy/methods , Germinoma/therapy , Pineal Gland/pathology , Adolescent , Adult , Australia , Brain Neoplasms/pathology , Child , Cohort Studies , Disease-Free Survival , Female , Germinoma/pathology , Humans , Male , Middle Aged , Queensland , Retrospective Studies , Treatment Outcome , Young Adult
5.
Cells ; 9(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973233

ABSTRACT

Glioblastoma (GBM) is a treatment-refractory central nervous system (CNS) tumour, and better therapies to treat this aggressive disease are urgently needed. Primary GBM models that represent the true disease state are essential to better understand disease biology and for accurate preclinical therapy assessment. We have previously presented a comprehensive transcriptome characterisation of a panel (n = 12) of primary GBM models (Q-Cell). We have now generated a systematic, quantitative, and deep proteome abundance atlas of the Q-Cell models grown in 3D culture, representing 6167 human proteins. A recent study has highlighted the degree of functional heterogeneity that coexists within individual GBM tumours, describing four cellular states (MES-like, NPC-like, OPC-like and AC-like). We performed comparative proteomic analysis, confirming a good representation of each of the four cell-states across the 13 models examined. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified upregulation of a number of GBM-associated cancer pathway proteins. Bioinformatics analysis, using the OncoKB database, identified a number of functional actionable targets that were either uniquely or ubiquitously expressed across the panel. This study provides an in-depth proteomic analysis of the GBM Q-Cell resource, which should prove a valuable functional dataset for future biological and preclinical investigations.


Subject(s)
Cell Culture Techniques/methods , Glioblastoma/metabolism , Glioblastoma/pathology , Proteomics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Ontology , Glioblastoma/genetics , Humans , Neoplasm Proteins/metabolism , Proteome/metabolism
6.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Article in English | MEDLINE | ID: mdl-31463571

ABSTRACT

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Subject(s)
Brain Neoplasms/metabolism , Dystroglycans/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/physiology , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/surgery , Cell Transformation, Neoplastic , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glioma/blood supply , Glioma/surgery , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation
7.
Sci Rep ; 9(1): 4902, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894629

ABSTRACT

Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.


Subject(s)
Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Neoplasm Transplantation , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice, Inbred NOD , Mice, SCID , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...