Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 149(23): 234901, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30579290

ABSTRACT

This study has two goals. First, the electric field gradient (EFG) present in the liquid-crystalline phases of ferroelectric FELIX-R&D is determined using NMR spectroscopy of noble gases 21Ne and 131Xe. The 21Ne and 131Xe NMR spectra were recorded over a temperature range, which covers all the mesophases of FELIX-R&D: nematic N*, smectic A, and smectic C*. The spin quantum number of both 21Ne and 131Xe is 3/2. Their electric quadrupole moment interacts with the EFG at the nuclear site, which in liquid-crystalline phases results in the NMR spectra of the triplet structure, instead of a singlet detectable in the isotropic phase. The total EFG experienced by the noble gas nuclei consists of two contributions; one arises from the quadrupole moments of the liquid crystal molecules (external contribution) and the other one from the deformation of the electron distribution of the atoms (deformational contribution). The total EFGs determined from the 131Xe and 21Ne quadrupole splittings are very similar in the nematic and smectic A phases but differ in the smectic C* phase, being about twice larger in the 21Ne case which stems from the larger deformation of the xenon electron cloud than that of neon. For the first time, EFG was determined also in the smectic C* phase applying noble gas NMR spectroscopy. Second, the structure of molecules which, as a mixture, compose the used ferroelectric liquid crystal, FELIX-R&D, is determined by applying a number of various NMR methods and sophisticated spectral analysis. In this part, NMR spectra were recorded from FELIX-R&D/CDCl3 solution. The NMR spectral analysis was divided into four subsystems with over 13 000 000 nonzero intensity transitions. It appeared that FELIX-R&D is composed of three phenyl pyrimidine derivatives and a chiral dopant with fluorine in the asymmetric carbon atom.

2.
Sci Rep ; 6: 24270, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052599

ABSTRACT

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is "frozen" at high temperatures (above 260 K), but it unexpectedly becomes "unfrozen" at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors.

3.
Phys Chem Chem Phys ; 17(5): 3214-26, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25519227

ABSTRACT

NMR relaxation experiments are widely used to investigate the local orientation mobility in dendrimers. In particular, the NMR method allows one to measure the spin-lattice relaxation rate, 1/T1, which is connected with the orientational autocorrelation function (ACF) of NMR active groups. We calculate the temperature (Θ) and frequency (ω) dependences of the spin-lattice NMR relaxation rates for segments and NMR active CH2 groups in poly-L-lysine (PLL) dendrimers in water, on the basis of full-atomic molecular dynamics simulations. It is shown that the position of the maximum of 1/T1(ω) depends on the location of the segments inside the dendrimer. This dependence of the maximum is explained by the restricted flexibility of the dendrimer. Such behavior has been predicted recently by the analytical theory based on the semiflexible viscoelastic model. The simulated temperature dependences of 1/T1 for terminal and inner groups in PLL dendrimers of n = 2 and n = 4 generations dissolved in water are in good agreement with the NMR experimental data, which have been obtained for these systems previously by us. It is shown that in the case of PLL dendrimers, the traditional procedure of the interpretation of NMR experimental data - when smaller values of 1/T1 correspond to higher orientation mobility - is applicable to the whole accessible frequency interval only for the terminal groups. For the inner groups, this procedure is valid only at low frequencies.


Subject(s)
Dendrimers/chemistry , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Polylysine/chemistry , Elasticity , Temperature , Viscosity , Water/chemistry
4.
Phys Chem Chem Phys ; 16(22): 10480-4, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24733492

ABSTRACT

The temperature dependencies of (13)C NMR relaxation rates in [bmim]PF6 ionic liquid have been measured and the characteristic times (τc) for the cation reorientation have been recalculated. We found the origin of the incorrect τc temperature dependencies that were earlier reported for ring carbons in a number of imidazolium-based ILs. After a correction of the approach (13)C T1, the relaxation data allowed us to obtain the characteristic times for an orientation mobility of each carbon, and a complicated experiment, such as NOE, was not required. Thus the applicability of (13)C NMR relaxation rate measurements to the calculation of the characteristic times for reorientation of all the carbons of the [bmim](+) cation was confirmed and our findings have shown that a (13)C NMR relaxation technique allowed its application to ionic liquids to be equally successful as for other liquid systems.

5.
J Org Chem ; 78(11): 5153-9, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23638811

ABSTRACT

Peptide nucleic acid (PNA) building blocks, bearing a fluorine sensor at C-5 of the uracil base [viz. trifluoromethyl and 3,3-bis(trifluoromethyl)-4,4,4-trifluorobut-1-ynyl], were synthesized and incorporated to a PNA strand, and their applicability for the monitoring of different hybridization modes by (19)F NMR spectroscopy was studied. Both sensors gave unique (19)F resonance shifts in NMR when the PNA was targeted to a complementary antiparallel DNA, antiparallel RNA, parallel DNA, and parallel RNA. The 5-trifluoromethyl-derived sensor was additionally applied for the monitoring of interconversions from a parallel DNA/PNA complex to an antiparallel RNA/PNA complex and from a PNA/PNA complex to two DNA/PNA complexes (i.e., double-duplex invasion).


Subject(s)
DNA/analysis , Fluorine/chemistry , Oligonucleotides/analysis , Peptide Nucleic Acids/chemistry , RNA/analysis , Magnetic Resonance Spectroscopy , Molecular Structure , Peptide Nucleic Acids/chemical synthesis
6.
Phys Chem Chem Phys ; 14(37): 13053-7, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22886109

ABSTRACT

Knowledge of ionicity is requisite for successful identification of those salt qualities required to design and couple the most appropriate fluid for performance of an intended chemical function. We report on utilisation of (35)Cl(-) quadrupolar coupling constants (C(Q)) to quantitatively assess the ionicities of given chloride salts, by exploiting the electronic response of the quadrupolar chlorine atom as a function of its immediate chemical environment. We find that protic salts in particular, like their aprotic analogues, are highly ionised, while at the same time being highly associated, in stark contrast to literature reports claiming in general that they are of sub-ionic origin.


Subject(s)
Chlorides/chemistry , Salts/chemistry , Ion Transport , Ions/chemistry , Magnetic Resonance Spectroscopy
7.
J Chem Phys ; 135(12): 124901, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21974558

ABSTRACT

A new theoretical description of the interior mobility of carbosilane dendrimers has been tested. Experiments were conducted using measurements of the (1)H NMR spin-lattice relaxation time, T(1H), of two-, three- and four-generation carbosilane dendrimers with three different types of terminal groups in dilute chloroform solutions. Temperature dependences of the NMR relaxation rate, 1/T(1H), were obtained for the internal CH(2)-groups of the dendrimers in the range of 1/T(1H) maximum, allowing us to directly evaluate the average time of the internal spectrum for each dendrimer. It was found that the temperature of 1/T(1H) maximum is practically independent of the number of generations, G; therefore, the theoretical prediction was confirmed experimentally. In addition, the average time of the internal spectrum of carbosilane dendrimers was found to be near 0.2 ns at room temperature, and this value correlates well with the values previously obtained for other dendrimer structures using other experimental techniques.


Subject(s)
Dendrimers/chemistry , Silanes/chemistry , Dendrimers/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Silanes/chemical synthesis , Time Factors
9.
J Phys Chem B ; 114(12): 4159-65, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20201498

ABSTRACT

The 4-generation carbosilane dendrimer with terminal cyanobiphenyl mesogenic groups in dilute solution of CDCl(3) was investigated using (1)H NMR technique. The spectrum was obtained and the relaxation time, T(1), was measured in the temperature range 320-225 K. For the first time, the extrema of T(1) values were achieved for majority of the dendrimer functional groups. The values of activation energies of the dendrimer functional groups were obtained. The relaxation data for outer and inner methyl groups show that the dendrimer investigated has dense corona and hollow core. This structure is formed because the mesogenic groups do not allow terminal segments to penetrate into the dendrimer, that is, the backfolding effect is absent. The NMR spectral and relaxation data give evidence for changing conformation of the dendrimer internal segments with decreasing temperature. This reorganization is most likely connected with a change of dendrimer size. We suppose that our experimental results will provide additional information for understanding principles of dendrimer nanocontainer operation. NMR can possibly be a tool for indicating the encapsulation effect as well as the dendrimer effective size.


Subject(s)
Dendrimers/chemistry , Magnetic Resonance Spectroscopy/methods , Silanes/chemistry
10.
Mol Syst Biol ; 4: 167, 2008.
Article in English | MEDLINE | ID: mdl-18277383

ABSTRACT

Subtle metabolic changes precede and accompany chronic vascular complications, which are the primary causes of premature death in diabetes. To obtain a multimetabolite characterization of these high-risk individuals, we measured proton nuclear magnetic resonance (1H NMR) data from the serum of 613 patients with type I diabetes and a diverse spread of complications. We developed a new metabonomics framework to visualize and interpret the data and to link the metabolic profiles to the underlying diagnostic and biochemical variables. Our results indicate complex interactions between diabetic kidney disease, insulin resistance and the metabolic syndrome. We illustrate how a single 1H NMR protocol is able to identify the polydiagnostic metabolite manifold of type I diabetes and how its alterations translate to clinical phenotypes, clustering of micro- and macrovascular complications, and mortality during several years of follow-up. This work demonstrates the diffuse nature of complex vascular diseases and the limitations of single diagnostic biomarkers. However, it also promises cost-effective solutions through high-throughput analytics and advanced computational methods, as applied here in a case that is representative of the real clinical situation.


Subject(s)
Diabetes Complications/mortality , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/mortality , Nuclear Magnetic Resonance, Biomolecular/methods , Acetates/blood , Adult , Albuminuria/metabolism , Antihypertensive Agents/therapeutic use , Apolipoproteins B/blood , Biomarkers/blood , Cholesterol/blood , Cholesterol, HDL/blood , Creatinine/blood , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/urine , Diabetic Nephropathies/blood , Diabetic Nephropathies/diagnosis , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lactic Acid/metabolism , Metabolic Syndrome/blood , Middle Aged , Protons , Reproducibility of Results , Triglycerides/blood , Urea/blood
11.
BMC Bioinformatics ; 8 Suppl 2: S8, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17493257

ABSTRACT

BACKGROUND: A key challenge in metabonomics is to uncover quantitative associations between multidimensional spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on clinically relevant estimation of lipoprotein lipids by 1H NMR spectroscopy of serum. RESULTS: A Bayesian methodology, with a biochemical motivation, is presented for a real 1H NMR metabonomics data set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo (MCMC) and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very low density lipoprotein triglycerides (VLDL-TG), 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively). The modelling produced a kernel-based reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the 1H NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the IDL and LDL resonances in the 1H NMR spectra. CONCLUSION: The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful in the field of metabonomics.


Subject(s)
Blood Chemical Analysis/methods , Coronary Disease/blood , Coronary Disease/diagnosis , Diagnosis, Computer-Assisted/methods , Lipoproteins/blood , Magnetic Resonance Spectroscopy/methods , Artificial Intelligence , Bayes Theorem , Biomarkers/blood , Humans , Pattern Recognition, Automated/methods , Protons , Reproducibility of Results , Sensitivity and Specificity
12.
NMR Biomed ; 20(7): 658-72, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17212341

ABSTRACT

(1)H NMR spectra of plasma are known to provide specific information on lipoprotein subclasses in the form of complex overlapping resonances. A combination of (1)H NMR and self-organising map (SOM) analysis was applied to investigate if automated characterisation of subclass-related metabolic interactions can be achieved. To reliably assess the intrinsic capability of (1)H NMR for resolving lipoprotein subclass profiles, sum spectra representing the pure lipoprotein subclass part of actual plasma were simulated with the aid of experimentally derived model signals for 11 distinct lipoprotein subclasses. Two biochemically characteristic categories of spectra, representing normolipidaemic and metabolic syndrome status, were generated with corresponding lipoprotein subclass profiles. A set of spectra representing a metabolic pathway between the two categories was also generated. The SOM analysis, based solely on the aliphatic resonances of these simulated spectra, clearly revealed the lipoprotein subclass profiles and their changes. Comparable SOM analysis in a group of 69 experimental (1)H NMR spectra of serum samples, which according to biochemical analyses represented a wide range of lipoprotein lipid concentrations, corroborated the findings based on the simulated data. Interestingly, the choline-N(CH(3))(3) region seems to provide more resolved clustering of lipoprotein subclasses in the SOM analyses than the methyl-CH(3) region commonly used for subclass quantification. The results illustrate the inherent suitability of (1)H NMR metabonomics for automated studies of lipoprotein subclass-related metabolism and demonstrate the power of SOM analysis in an extensive and representative case of (1)H NMR metabonomics.


Subject(s)
Lipoproteins/blood , Lipoproteins/classification , Magnetic Resonance Spectroscopy/methods , Choline/metabolism , Humans , Lipoproteins/metabolism , Protons
13.
Atherosclerosis ; 190(2): 352-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16730730

ABSTRACT

Proton NMR spectroscopy as a means to quantify lipoprotein subclasses has received wide clinical interest. The experimental part is a fast routine procedure that contrasts favourably to other lipoprotein measurement protocols. The difficulties in using (1)H NMR, however, are in uncovering the subclass specific information from the overlapping data. The NMR-based quantification has been evaluated only in relation to biochemical measures, thereby leaving the inherent capability of NMR rather vague due to biological variation and diversity among the biochemical experiments. Here we will assess the use of (1)H NMR spectroscopy of plasma per se. This necessitates data for which the inherent parameters, namely the shapes and areas of the (1)H NMR signals of the subclasses are available. This was achieved through isolation and (1)H NMR experiments of 11 subclasses--VLDL1, VLDL2, IDL, LDL1, LDL2, LDL3, HDL(2b), HDL(2a), HDL(3a), HDL(3b) and HDL(3c)--and the subsequent modelling of the spectra. The subclass models were used to simulate biochemically representative sets of spectra with known subclass concentrations. The spectral analyses revealed 10-fold differences in the quantification accuracy of different subclasses by (1)H NMR. This finding has critical significance since the usage of (1)H NMR methodology in the clinical arena is rapidly increasing.


Subject(s)
Lipoproteins/blood , Lipoproteins/classification , Computer Simulation , Humans , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Magnetic Resonance Spectroscopy/methods , Sensitivity and Specificity
14.
MAGMA ; 19(6): 281-96, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17171386

ABSTRACT

OBJECT: The most severe complication of type 1 diabetes (T1DM) is diabetic nephropathy. It is associated with a high risk of cardiovascular complications and premature death and requires early detection to be efficiently treated. The clinical practice to diagnose diabetic nephropathy is also a non-optimal and tedious set up based on albumin excretion rate in multiple overnight or 24h urine samples. Conversely, in this study, these independent diagnostic data are used to provide a realistic testing case for applying (1)H NMR metabonomics of serum in a diagnostic fashion. MATERIALS AND METHODS: 182 T1DM and 21 non-diabetic (non-T1DM) individuals were studied. The (1)H NMR of serum at 500 MHz was targeted at two molecular windows: lipoprotein lipids and low-molecular-weight metabolites. RESULTS: T1DM and non-T1DM individuals were exclusively separated by (1)H NMR. For diabetic nephropathy diagnosis in the T1DM patients, (1)H NMR data (and clinical biochemistry data) gave a sensitivity of 87.1% (83.9%) and a specificity of 87.7% (95.9%). The predictive values of positive and negative tests were 89.0% (95.5%) and 83.6% (79.2%), respectively. CONCLUSIONS: (1)H NMR metabonomics clearly distinguishes metabolic characteristics of T1DM and appears approximately as good a means to diagnose diabetic nephropathy from serum as an advanced set of biochemical variables.


Subject(s)
Blood Chemical Analysis/methods , Blood Proteins/analysis , Diabetic Nephropathies/blood , Diabetic Nephropathies/diagnosis , Magnetic Resonance Spectroscopy/methods , Proteome/analysis , Biomarkers/blood , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
15.
Metabolism ; 54(3): 410-20, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15736122

ABSTRACT

Because of differences in energy yield and oxygen demand, the selection of oxidative fuels is important in the hypoxic or ischemic heart muscle. The aim of the present study was to clarify the contradictions observed in the effects of workload and fatty acid supply on myocardial fuel preference in isolated perfused rat hearts. Nuclear magnetic resonance spectroscopy combined with the administration of substrates labeled with the stable isotope carbon 13 and isotopomer analysis of glutamate labeling offers an opportunity to simultaneously measure metabolic fluxes in pathways feeding into the tricarboxylic acid (TCA) cycle. The work output was modulated by changes in extracellular calcium. In the presence of 5 mmol/L glucose, 0.5 mmol/L octanoate in the perfusate dominated the oxidative metabolism, and workload had little effect on the ratio of glucose to fatty acid utilization. This was the case even when the octanoate concentration was lowered to 50 micromol/L. The relative rate of replenishment of the TCA cycle intermediates was higher at a low workload. The redox state of flavoproteins in the intact heart was monitored fluorometrically to obtain an estimate of the mitochondrial reduced/oxidized nicotinamide-adenine dinucleotide ratio (NADH/NAD ratio) for assessment of the dominant level of regulation of cell respiration, and the myoglobin spectrum was simultaneously monitored to evaluate the oxygenation status of the myocardium. Commencement of octanoate infusion (50 micromol/L or 0.5 mmol/L) caused a large but transient reduction of mitochondrial NAD and, conversely, its cessation elicited NADH oxidation and rebound reduction. During glucose oxidation, an increase in workload led to oxidation of the mitochondrial NADH, but this effect was much smaller in the presence of 50 micromol/L octanoate and absent in the presence of 0.5 mmol/L. This indicates that strong control of oxygen consumption during glucose oxidation is exerted in the mitochondrial respiratory chain, whereas equal control during fatty acid oxidation is exerted within the metabolic pathway upstream from the respiratory chain. It is concluded that when a medium-chain fatty acid is available, myocardial workload and energy consumption have little influence on fuel preference and glucose oxidation remains suppressed.


Subject(s)
Calcium/pharmacology , Energy Metabolism/drug effects , Fatty Acids/metabolism , Myocardium/metabolism , Animals , Caprylates/administration & dosage , Citric Acid Cycle , Flavoproteins/metabolism , Glucose/metabolism , Heart Rate , Magnetic Resonance Spectroscopy , Male , Myoglobin/metabolism , Oxidation-Reduction , Oxygen Consumption , Rats , Rats, Sprague-Dawley
16.
Talanta ; 59(1): 177-89, 2003 Jan 02.
Article in English | MEDLINE | ID: mdl-18968898

ABSTRACT

Structural information of natural organic matter (NOM) at the molecular level is very essential in understanding their nature and reactivity. Nuclear magnetic resonance (NMR) is an excellent tool for estimating the gross chemical composition of the very complex humic matter (HM). A well-known fact is that the solid state (13)C NMR spectral analysis is very parameter-sensitive especially in the study of the heterogenous HM (e.g. baseline corrections, different pulse techniques and spinning rates of the rotor vs. different disruptive sidebands in the spectra). This being the case, it has been emphasized the importance of qualitative and quantitative analyses for generating as real spectra as possible by means of different pulse and polarization techniques, sampling spinning rates as well as certain correction factors. In the present study a practical accuracy for quantitative determination of NOM type material by solid state (13)C NMR spectroscopy was assessed using a known HM sample. Different magnetic-field strengths, sampling spinning rates, single and ramped amplitude cross polarization techniques and TOSS pulse sequence were applied for obtaining a more reliable insight into the disruptive effect of the chemical shift anisotropy (CSA), especially the most disturbing first order spinning side bands (SSB). The results demonstrated that the SSB problem is not so significant as sometimes stated, at least in the context of HM samples and in the light of the overall reproducibility and uncertainty connected with the sample itself.

17.
Inorg Chem ; 41(6): 1430-5, 2002 Mar 25.
Article in English | MEDLINE | ID: mdl-11896711

ABSTRACT

The reaction of (Me(3)SiN)(2)S with SeCl(2) (2:1 ratio) in CH(2)Cl(2) at -70 degrees C provides a route to the novel mixed selenium-sulfur-nitrogen compound (Me(3)SiNSN)(2)Se (1). Crystals of 1 are monoclinic and belong the space group P2(1)/c, with a = 7.236(1) A, b = 19.260(4) A, c = 11.436(2) A, beta = 92.05(3) degrees, V = 1592.7(5) A(3), Z = 4, and T = -155(2) degrees C. The NSNSeNSN chain in 1 consists of Se-N single bonds (1.844(3) A) and S=N double bonds (1.521(3)-1.548(3) A) with syn and anti geometry at the N=S=N units. The N-Se-N bond angle is 91.8(1) degrees. The EI mass spectrum shows a molecular ion with good agreement between the observed and calculated isotopic distributions. The (14)N NMR spectrum exhibits two resonances at -65 and -77 ppm. Both (13)C and (77)Se NMR spectra show single resonances at 0.83 and 1433 ppm, respectively. The reaction of 1 with an equimolar amount of SeCl(2) produces 1,5-Se(2)S(2)N(4) (2) in a good yield, and that of (Me(3)SiNSN)(2)S with SCl(2) affords S(4)N(4) (3), but the reactions of (Me(3)SiNSN)(2)Se with SCl(2) and (Me(3)SiNSN)(2)S with SeCl(2) result in the formation of a mixture of 2 and 3. A likely reaction pathway involves the intermediate formation of E(2)N(2) fragments (E = S, Se).

SELECTION OF CITATIONS
SEARCH DETAIL
...