Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2980, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316856

ABSTRACT

Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.


Subject(s)
Epilepsy , Wearable Electronic Devices , Humans , Algorithms , Artifacts , Electroencephalography , Epilepsy/diagnosis , Seizures/diagnosis
2.
IEEE Trans Biomed Circuits Syst ; 18(3): 608-621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38261487

ABSTRACT

The long-term, continuous analysis of electroencephalography (EEG) signals on wearable devices to automatically detect seizures in epileptic patients is a high-potential application field for deep neural networks, and specifically for transformers, which are highly suited for end-to-end time series processing without handcrafted feature extraction. In this work, we propose a small-scale transformer detector, the EEGformer, compatible with unobtrusive acquisition setups that use only the temporal channels. EEGformer is the result of a hardware-oriented design exploration, aiming for efficient execution on tiny low-power micro-controller units (MCUs) and low latency and false alarm rate to increase patient and caregiver acceptance.Tests conducted on the CHB-MIT dataset show a 20% reduction of the onset detection latency with respect to the state-of-the-art model for temporal acquisition, with a competitive 73% seizure detection probability and 0.15 false-positive-per-hour (FP/h). Further investigations on a novel and challenging scalp EEG dataset result in the successful detection of 88% of the annotated seizure events, with 0.45 FP/h.We evaluate the deployment of the EEGformer on three commercial low-power computing platforms: the single-core Apollo4 MCU and the GAP8 and GAP9 parallel MCUs. The most efficient implementation (on GAP9) results in as low as 13.7 ms and 0.31 mJ per inference, demonstrating the feasibility of deploying the EEGformer on wearable seizure detection systems with reduced channel count and multi-day battery duration.


Subject(s)
Electroencephalography , Seizures , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Humans , Electroencephalography/instrumentation , Electroencephalography/methods , Seizures/diagnosis , Seizures/physiopathology , Signal Processing, Computer-Assisted/instrumentation , Algorithms , Neural Networks, Computer
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3723-3728, 2022 07.
Article in English | MEDLINE | ID: mdl-36086434

ABSTRACT

In the context of epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological simi-larity in both amplitude and frequency, making seizure detection systems susceptible to higher false alarm rates. In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform. The analyses are based on the TUH EEG Artifact Corpus dataset and focus on the temporal electrodes. First, we extract optimal feature models in the frequency domain using an automated machine learning framework, achieving a 93.95% accuracy, with a 0.838 F1 score for a 4 temporal EEG channel setup. The achieved accuracy levels surpass state-of-the-art by nearly 20%. Then, these algorithms are parallelized and optimized for a PULP platform, achieving a 5.21x improvement of energy-efficient compared to state-of-the-art low-power implementations of artifact detection frameworks. Combining this model with a low-power seizure detection algorithm would allow for 300h of continuous monitoring on a 300 mAh battery in a wearable form factor and power budget. These results pave the way for implementing affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patients' and caregivers' requirements. Clinical relevance- The proposed EEG artifact detection framework can be employed on wearable EEG recording devices, in combination with EEG-based epilepsy detection algorithms, for improved robustness in epileptic seizure detection scenarios.


Subject(s)
Artifacts , Epilepsy , Algorithms , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Seizures/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...