Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 28(9): 133, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28744615

ABSTRACT

Prosthetic implants are used daily to treat edentulous people and to restore mobility in patients affected by skeletal defects. Titanium (Ti) is the material of choice in prosthetics, because it can form a stable bond with the surrounding bone following implantation-a process known as osseointegration. Yet, full integration of prosthetic implants takes time, and fails in clinical situations characterized by limited bone quantity and/or compromised regenerative capacity, and in at-risk patients. Intense research efforts are thus made to develop new implants that are cost-effective, safe, and suited to every patient in each clinical situation. In this study, we tested the possibility to functionalize Ti implants using stem cells. Human induced pluripotent stem cell-derived mesenchymal progenitor (iPSC-MP) cells were cultured on Ti model disks for 2 weeks in osteogenic conditions. Samples were then treated using four different decellularization methods to wash off the cells and expose the matrix. The functionalized disks were finally sterilized and seeded with fresh human iPSC-MP cells to study the effect of stem cell-mediated surface functionalization on cell behavior. The results show that different decellularization methods produce diverse surface modifications, and that these modifications promote proliferation of human iPSC-MP cells, affect the expression of genes involved in development and differentiation, and stimulate the release of alkaline phosphatase. Cell-mediated functionalization represents an attractive strategy to modify the surface of prosthetic implants with cues of biological relevance, and opens unprecedented possibilities for development of new devices with enhanced therapeutic potential.


Subject(s)
Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Titanium/chemistry , Biocompatible Materials , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dental Implants , Humans , Materials Testing , Osteoblasts , Pluripotent Stem Cells/physiology , Prostheses and Implants , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...