Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cosmet Sci ; 64(3): 165-74, 2013.
Article in English | MEDLINE | ID: mdl-23752031

ABSTRACT

Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.


Subject(s)
Geography , Seasons , Skin/drug effects , Sorbitol/pharmacology , Adolescent , Adult , Cells, Cultured , Female , Humans , Middle Aged , Osmosis , Young Adult
2.
In Vitro Cell Dev Biol Anim ; 44(5-6): 135-9, 2008.
Article in English | MEDLINE | ID: mdl-18363074

ABSTRACT

The signals for epidermal differentiation and barrier formation are largely unknown. One possible signal is dehydration or osmotic stress. To test this hypothesis, we investigated the effects of osmotic stress on markers of differentiation of normal human keratinocytes in culture. Hyperosmotic stress treatment of normal human keratinocyte cultures by elevated sorbitol concentrations was observed to induce markers of terminal differentiation. Sorbitol was added to keratinocyte media at 50, 100, 200, and 300 mM final concentration. These concentrations of sorbitol induce a dehydration effect or osmotic stress on the keratinocytes. These sorbitol treatments increased the levels of messenger RNA for the differentiation markers involucrin, transglutaminase, and filaggrin as measured by reverse transcription-polymerase chain reaction. Keratin K1 and K10 and involucrin protein levels were also increased in normal human keratinocyte cultures exposed to increasing osmotic stress. These observations suggest that keratinocytes in the epidermis may use dehydration as a sign to trigger the differentiation of the skin barrier.


Subject(s)
Cell Differentiation , Epidermal Cells , Keratinocytes/cytology , Cells, Cultured , Filaggrin Proteins , Gene Expression Regulation , Humans , Keratins/genetics , Keratins/metabolism , Osmotic Pressure , Protein Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
3.
Article in English | MEDLINE | ID: mdl-11803255

ABSTRACT

Ultraviolet irradiation of normal human keratinocytes induces a cytotoxic effect. The chromophore for this effect is believed to be genomic DNA. However, DNA damage is known to be repaired in UVB irradiated keratinocytes. The trigger for this DNA repair is potentially damaged DNA itself. To test the hypothesis that damaged DNA can induce the host cell's own DNA repair mechanism, we treated the keratinocytes with the damaged DNA and evaluated its cytoprotective effects. We have observed that fragmented calf thymus DNA irradiated and damaged with a UVC light can induce a protective effect in cultured human keratinocytes. Keratinocytes treated with UVC damaged DNA fragments are less susceptible to UVB irradiation-induced cell death as measured by neutral red uptake. Unirradiated exogenous DNA did not induce this protective effect. Similar protective effects can be seen with irradiated salmon sperm DNA. UVC damaged DNA fragments induced 60% increase in protection in human HaCaT keratinocyte in culture to the cell death induced by UVB. Similar protection was observed with UVC irradiated oligothymidylic acid (dT3-dT5) which increased the survival of human HaCaT keratinocytes after UVB irradiated by 50%. Isolated mononucleotides, irradiated or not, do not increase UVB survivability. Cellular DNA synthesis was greatly inhibited by UVB, becoming undetectable at 40 mJ/cm(2). Exogenous treatment with damaged fragments causes immediate and significant inhibition of total cellular DNA synthesis. This inhibition was dose dependent. Cells that undergo damage to their DNA are known to inhibit endogenous DNA synthesis via p53 suppressor gene activation. This is believed to allow them sufficient time to repair the host DNA. The cellular response to exogenous damaged DNA may be a similar mechanism.


Subject(s)
Cytoprotection/physiology , DNA/pharmacology , Keratinocytes/physiology , Animals , Cattle , Cell Survival/drug effects , Cell Survival/radiation effects , Cytoprotection/drug effects , DNA/physiology , DNA/radiation effects , DNA Fragmentation/physiology , DNA Fragmentation/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL